首页> 外文会议>International Congress on Advances in Nuclear Power Plants >Numerical Modeling of Lead Oxidation in Controlled Lead Bismuth Eutectic Systems: Chemical Kinetics and Hydrodynamic Effects
【24h】

Numerical Modeling of Lead Oxidation in Controlled Lead Bismuth Eutectic Systems: Chemical Kinetics and Hydrodynamic Effects

机译:控制铅铋铅氧化铅氧化的数值模拟 - 化学动力学和流体动力学效应

获取原文

摘要

Using liquid Lead-Bismuth Eutectic (LBE) as coolant in nuclear systems has been studied for more than 50 years. And LBE has many unique nuclear, thermo physical and chemical attributes which are attractive for practical application. But, corrosion is one of the greatest concerns in using liquid Lead-Bismuth Eutectic (LBE) as spallation target in the Accelerator-driven Transmutation of Waste (ATW) program. Los Alamos National Laboratory has designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten LBE. A difference of 100°C was designed between the coldest and the hottest parts at a nominal flow rate of 8.84GPM. Liquid LBE flow was activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. Therefore, it is of importance to understand what the oxygen concentrations are in the LBE loop related to the corrosion effects on the metal surface, the temperature profiles, the flow rates, and diffusion rates through the metal surface. The chemical kinetics also needs to be fully understood in the corrosion processes coupled with the hydrodynamics. The numerical simulation will be developed and used to analyze the system corrosion effects with different kind of oxygen concentrations, flow rates, chemical kinetics, and geometries. The hydrodynamics modeling of using computational fluid dynamics will provide the necessary the levels of oxygen and corrosion products close to the boundary or surface. This paper presents an approach towards the above explained tasks by analyzing the reactions between the Lead and oxygen at a couple of sections in the MTL. Attempt is also made to understand the surface chemistry by choosing an example model and estimating the near wall surface concentration values for propane and oxygen.
机译:使用液体铅 - 铋共晶(LBE)作为核系统中的冷却剂已经研究超过50年。 LBE拥有许多独特的核,热物理和化学物质,对实际应用具有吸引力。但是,腐蚀是在加速(ATW)程序中的加速器驱动的嬗变中使用液体铅 - 铋共晶(LBE)的最大问题之一。 LOS Alamos National Laboratory设计并建造了液体引导铋材料测试回路(MTL),以研究熔融LBE流动的材料行为。在最寒冷和最热的零件之间以8.84gpm的标称流速设计100°C的差异。液体LBE流由机械漏斗泵或通过自然对流激活。为了在不锈钢管的表面上保持自愈保护膜,必须在液态金属中保持一定浓度的氧气。因此,了解氧气浓度在LBE环中与金属表面,温度谱,流速和通过金属表面扩散速率的腐蚀效果有关的LBE环。在与流体动力学耦合的腐蚀过程中也需要完全理解化学动力学。将开发数值模拟并用于分析不同种类的氧气浓度,流速,化学动力学和几何形状的系统腐蚀效应。使用计算流体动力学的流体动力学建模将提供必要的氧气和腐蚀产物靠近边界或表面的水平。本文通过分析MTL中的几个部分的铅和氧气之间的反应来提出上述任务的方法。还通过选择示例模型并估计丙烷和氧气的接近壁表面浓度值来了解表面化学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号