首页> 外文会议>European Symposium on Improved Oil Recovery >Diffusion and Matrix-fracture Interactions during Gas Injection in Fractured Reservoirs
【24h】

Diffusion and Matrix-fracture Interactions during Gas Injection in Fractured Reservoirs

机译:裂缝储层气体注射过程中的扩散和基质裂缝相互作用

获取原文

摘要

Molecular diffusion can play a significant role in oil recovery during gas injection in fractured reservoirs. Diffusion of gas components from a fracture into the matrix extracts oil components from matrix and delays, to some extent, the gas breakthrough. This in turn increases both sweep and displacement efficiencies. In current simulation models, molecular diffusion is commonly modeled using a classical Fick's law approach with constant diffusion coefficients. In the classical Fick's law approach, the dragging effects (off-diagonal diffusion coefficients) are neglected. In addition, the gas-oil diffusion at the fracture-matrix interface is normally modeled by assuming an average composition at the interface which does not have a sound physical basis. In this paper, we present a dual-porosity model in which the generalized Fick's law is used for molecular diffusion to account for the dragging effects; and gas-oil diffusion at the fracture-matrix interface is modeled based on film theory in which the gas in fracture and oil in the matrix are assumed to be at equilibrium A novel shape factor is also introduced for gas-oil diffusion based on film theory Diffusion coefficients are calculated using the Maxwell-Stefan model and are pressure, temperature and composition dependent. A time-dependent transfer function is used for matrix-fracture exchange in which the shape factor is adjusted using a boost factor to differentiate between the transfer rate at early and late times Field-scale examples are used to demonstrate that the dragging effects (off-diagonal diffusion coefficients) can significantly impact the oil recovery during gas injection in fractured reservoirs. It is also shown that using proper physical models for matrix-fracture interactions (film theory for gas-oil diffusion and transfer function with boost factor) can considerably affect the simulation results as compared to conventional models We also show that miscibility is not developed in the matrix blocks even at pressures above minimum miscibility pressure (MMP) when molecular diffusion is the main recovery mechanism during gas injection in fractured reservoirs. The work presented in this paper is directly applicable to the study and design of gas injection processes in fractured reservoirs through an improved understanding of the effect of diffusion and matrix-fracture interactions on these processes.
机译:分子扩散可以在裂缝储存器中的气体注射期间在储质过程中发挥着重要作用。将气体成分从骨折扩散到基质中提取来自基质的油组分,在某种程度上在一定程度上突破。这反过来又增加了扫描和位移效率。在当前的仿真模型中,分子扩散通常使用具有恒定扩散系数的经典Fick的定律方法进行建模。在古典Fick的定律方法中,忽略了拖动效应(偏离对角线扩散系数)。此外,裂缝 - 矩阵界面处的气体油扩散通常通过假设界面处的平均成分来模拟,这不具有声音物理的基础。在本文中,我们提出了一种双孔隙度模型,其中广义Fick的定律用于分子扩散来解释拖曳效应;骨折 - 矩阵界面处的气体油扩散是基于薄膜理论的建模,其中假设基质中的裂缝和油中的气体处于平衡,还引入了基于薄膜理论的气体油扩散的新形状因子使用MaxWell-Stefan模型计算扩散系数,并且是压力,温度和组成依赖性。时间依赖的传递函数用于矩阵断裂交换,其中使用升压因子调整形状因子,以在早期和迟到的时间范围示例中区分传输速率来证明拖动效果(off-对角线扩散系数)可以显着影响裂缝储存器中的气体喷射过程中的采油。还表明,使用用于矩阵 - 断裂相互作用的适当物理模型(用于气体油扩散和转移函数的薄膜理论,具有升压因子)可以大大影响与传统模型相比的仿真结果,我们还表明不开发混溶性当分子扩散是裂缝储层中的气体注射过程中的主要回收机制时,甚至在最小混溶性压力(MMP)的压力下均匀的基质块。本文提出的该作品通过改善了对这些过程对扩散和基质断裂相互作用的改进了解,直接适用于裂缝储层中的气体喷射过程的研究和设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号