首页> 外文会议>CIRP Conference on Electro Physical and Chemical Machining >Electrical discharge machining of ceramic/carbon nanostructure composites
【24h】

Electrical discharge machining of ceramic/carbon nanostructure composites

机译:陶瓷/碳纳米结构复合材料的电气放电加工

获取原文

摘要

The miniaturization of mechanical components with complex shapes is a great challenge in emerging applications. Silicon nitride (Si_3N_4) ceramics are excellent candidates for such applications due to their outstanding mechanical, thermal, and tribological properties. However, they are difficult to machine using normal mechanical machining methods. If the material were electrically conductive, electrical discharge machining (EDM) could be applied to produce precise and complex shapes. In this paper, in order to investigate the effects of electrical conductivity on the EDM characteristics, several carbon nanostructure composite materials are fabricated and EDMed using the assisting electrode method proposed by the current authors. The performance of the process is evaluated as a function of the carbon nanostructure content and type. The former is separately selected to be close to the electrical percolation threshold (0.9 vol.% and 5.3 vol.% for carbon nanotube (CNT) and graphene Nano platelet (GNP) composites, respectively), and well above that limit (5.3 vol.% and 20.6 vol.%), where electrical conductivities on the order of 10 and 100 S?m~(-1) are attained for CNTs and GNPs-based nanocomposites, respectively. In addition, bare Si_3N_4 specimens are also tested. Material removal rate, electrode wear ratio, and surface roughness of the machined pieces are analyzed for all testing conditions.
机译:具有复杂形状的机械部件的小型化是新兴应用中的巨大挑战。氮化硅(Si_3N_4)陶瓷是由于其出色的机械,热和摩擦学特性而具有优异的候选候选者。但是,它们难以使用正常机械加工方法机器。如果材料是导电的,则可以应用放电加工(EDM)以产生精确和复杂的形状。在本文中,为了研究导电性对EDM特性的影响,使用当前作者提出的辅助电极方法制造和反射几种碳纳米结构复合材料。该方法的性能被评价为碳纳米结构含量和类型的函数。前者被单独选择接近电渗透阈值(0.9体积%和5.3体积%,分别为碳纳米管(CNT)和石墨烯纳米血小板(GNP)复合材料),远高于该限制(5.3 Vol。 %和20.6体积%),其中10级和100秒αm〜(-1)的电导率分别用于CNT和基于GNPS的纳米复合材料。此外,还测试了裸SI_3N_4样本。对机加工件的材料去除速率,电极磨损比和表面粗糙度进行分析所有测试条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号