首页> 外文会议>CIRP Conference on Electro Physical and Chemical Machining >Development and optimization of the die-sinking EDM-technology for machining the nickel-based alloy MAR-M247 for turbine components
【24h】

Development and optimization of the die-sinking EDM-technology for machining the nickel-based alloy MAR-M247 for turbine components

机译:用于加工镍基合金MAR-M247涡轮机组件的模具沉入EDM技术的开发与优化

获取原文

摘要

In this paper, the results regarding the optimization of the die-sinking EDM-technology for the fabrication of turbine components are presented. The main objective of this work was the reduction of machining time while producing cavities with a depth of 11 mm in the alloy MAR-M247, with respect to the requirements for surface roughness and sub-surface damage. The study was conducted using graphite electrodes of three different dimensions, totalizing 12 electrodes and a total electrode area of 89.50 mm~2. The machine tool GENIUS 1000 THE CUBE was used in the experiments and IonoPlus IME-MH was used as dielectric fluid. The Design of Experiments Methods (DoE) was applied in the planning and execution of all experiments. Firstly, experiments were conducted to estimate the maximal discharge current that can be applied for fulfilling the quality criteria regarding both surface roughness and thickness of affected sub-surface, since discharge current is known as the main influencing process parameter affecting both factors. In the second stage, the process was optimized by varying following electrical parameters of the machine tool: discharge current (i_e), discharge duration (t_i), pause duration (t_0), ignition voltage (V) and duty factor (τ). Finally, both process parameters as well as machine tool's control parameters were adjusted to achieve optimized results regarding the total machining time and electrode wear with respect to the surface requirements of produced parts. A total machining time reduction of more than 50% in comparison to the technology currently employed by the industry was achieved. Requirements on both arithmetical surface roughness as well as affected sub-surface thickness could be fulfilled. This robust technology was developed for producing the cavities in MAR-M247 and all applied methods, studied parameters as well as the results regarding machining time, electrode wear and the quality of the achieved work piece are presented.
机译:本文介绍了关于制造涡轮机部件的芯片磨削EDM技术优化的结果。这项工作的主要目的是减少加工时间,同时在合金MAR-M247中产生深度为11mm的空腔,关于表面粗糙度和亚表面损坏的要求。使用三种不同尺寸的石墨电极进行该研究,总共12个电极,总电极面积为89.50mm〜2。机床天才1000在实验中使用立方体,并使用INOPLUS IME-MH作为介电流体。实验方法(DOE)的设计应用于所有实验的规划和执行。首先,进行实验以估计可以应用于满足受影响子表面的表面粗糙度和厚度的质量标准的最大放电电流,因为放电电流被称为影响两个因素的主要影响过程参数。在第二阶段,通过改变机床的电参数:放电电流(i_e),放电持续时间(t_i),暂停持续时间(t_0),点火电压(v)和占空比(τ)来优化该过程。最后,调整过程参数以及机床的控制参数,以实现关于总加工时间和电极磨损的优化结果,相对于所产生的部件的表面要求。与当前行业目前采用的技术相比,总加工时间减少了50%以上。可以实现对算术表面粗糙度以及受影响的子表面厚度的要求。这种稳健的技术是开发用于在MAR-M247中产生腔的腔,并提出了关于加工时间,电极磨损和所达到的工件质量的参数,研究参数以及所达到的工件的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号