首页> 外文会议>ASME Bioengineering Conference >ANISOTROPIC STRAIN EFFECTS ON VASCULAR SMOOTH MUSCLE CELL PHYSIOLOGY
【24h】

ANISOTROPIC STRAIN EFFECTS ON VASCULAR SMOOTH MUSCLE CELL PHYSIOLOGY

机译:各向异性应变对血管平滑肌细胞生理学的影响

获取原文

摘要

Biological development is a complex and highly-regulated process, a significant part of which is controlled by mechanostimulus, or the strain imparted on a cell by its environment. Mechanostimulus is important for stem cell differentiation, from cytoskeletal assembly to cell-cell and cell-matrix adhesion [1]. The mechanics of cells and tissues play a critical role in organisms, under both physiological and pathological conditions; abnormal mechanotransduction - the mechanism by which cells sense and respond to strain - has been implicated in a wide range of clinical pathologies [2,3]. Strain as a developmental regulator is especially pertinent for vascular smooth muscle cells (SMCs), as they exist in an environment of cyclic mechanical strain imposed on the vasculature by the heart pumping blood through it. SMC phenotype ultimately depends on an interplay of myriad factors, and strain conditions have been connected to genetic upregulation and downregulation, proliferation, apoptosis, and organization of intracellular structures as well as cells into tissues. Physiological data shows that in vivo, vascular SMCs experience anisotropic biaxial strain. Understanding anisotropic strain requires some understanding of cell morphology. The functionality of a smooth muscle cell resides in its contractile unit, the myofibril - an interlaced network of parallel actin and myosin filaments that slide over each other to induce contraction. An SMC has a major and a minor axis. The major axis runs parallel to the myofibril, while the minor axis runs perpendicular to the myofibril; thus, the cell always contracts along its major axis. The axes determine the strain type: anisotropic biaxial strain propagates in different magnitudes across each axis of the cell (Figure 1). In this study, we present the effects of anisotropic biaxial strain on vascular SMC viability, functionality, and proliferation.
机译:生物发育是一种复杂且高度调节的方法,其重要的部分是由机械蛋白的控制,或通过其环境赋予细胞上的菌株。机械蛋白是对干细胞分化的重要性,从细胞骨骼组件到细胞 - 细胞和细胞 - 基质粘附[1]。细胞和组织的机制在生理和病理条件下在生物体中发挥着关键作用;异常机械调整 - 细胞感和响应菌株的机制 - 已涉及各种临床病理[2,3]。作为发育调节剂的菌株对于血管平滑肌细胞(SMC)特别有关,因为它们存在于通过心脏泵送血液施加在脉管系统上的循环机械应变的环境中。 SMC表型最终取决于无数因素的相互作用,菌株病症已与细胞内结构以及细胞组织成组织的遗传上调和下调,增殖,细胞凋亡和组织。生理数据表明,在体内,血管SMCs体验各向异性双轴菌株。理解各向异性应变需要一些对细胞形态的理解。平滑肌细胞的功能存在于其收缩单元中,肌纤维 - 平行肌动蛋白和肌球蛋白长丝的交错网络,其滑动彼此以引起收缩。 SMC具有主要和短轴。主轴平行于肌原纤维,而小轴垂直于肌原纤维延伸;因此,该细胞始终沿其长轴合同。轴确定应变型:各向异性双轴应变在电池的每个轴上以不同的幅度传播(图1)。在这项研究中,我们介绍了各向异性双轴应变对血管SMC活力,功能和增殖的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号