首页> 外文会议>ASME Bioengineering Conference >A MULTISCALE MODEL OF CELL ADHESION AND MIGRATION ON EXTRACELLULAR MATRICES OF DEFINED STIFFNESS AND ADHESIVITY
【24h】

A MULTISCALE MODEL OF CELL ADHESION AND MIGRATION ON EXTRACELLULAR MATRICES OF DEFINED STIFFNESS AND ADHESIVITY

机译:细胞粘附和迁移的多尺度模型和定义刚度和粘附性的细胞外基质

获取原文

摘要

Eukaryotic cells actively respond to variations in ligand density and stiffness of their extracellular matrix (ECM). This cell-ECM relationship plays an important role in regulating cell migration, wound healing, tumor invasion and metastasis. A better understanding of these mechanosenstive responses requires more rigorous models of the relationships between ECM biophysical properties, mechanotransductive signals, assembly of contractile and adhesive structures, and cell migration. We have developed a novel multiscale model of cell migration on ECMs of defined biophysical properties that integrates local activation of intracellular biochemical signals and force generation with adhesion dynamics at the cell-ECM interface and protrusion dynamics at the front of the cell. We capture the mechanosensitivity of individual cellular components by dynamically coupling ECM properties to the activation of Rho and Rac GTPases in specific regions of the cell with actin-myosin contractility, adhesive bond formation and rupture at the cell-ECM interface, and cell-level behaviors such as extension and retraction of migratory processes. Our model predicts for the first time recently reported transitions from filopodial to "stick-slip" to gliding motility on ECMs of increasing stiffness, previously observed biphasic dependences of migration speed on ECM stiffness and ligand density, and our own new high-resolution measurements of mechanosensitive protrusion dynamics during cell motility. The model also provides a mechanistic explanation of how the tendency of the cell to polarize might affect the biphasic dependence of cell migration speed on ECM stiffness. This model enables us to individually probe various parameters that affect cell-ECM interaction and simulate the cell migration response under extracellular conditions that may not be readily accessible in experiments.
机译:真核细胞积极响应其细胞外基质(ECM)的配体密度和刚度的变化。这种细胞 - ECM关系在调节细胞迁移,伤口愈合,肿瘤侵袭和转移方面发挥着重要作用。更好地了解这些机械性反应需要更严格的ECM生物物理性质,机械通信,收缩和粘合结构组装和细胞迁移之间的关系的更严格模型。我们已经开发了一种新的细胞迁移细胞迁移模型,其对鉴定的生物物理特性的ECMS,其整合了细胞内生物化学信号的局部激活,并在细胞 - ECM接口处用粘附动力学产生了粘附动力学和电池前部的突出动力学。通过将ECM性能动态耦合到Cell-Myosin收缩性,粘合剂形成和细胞 - ECM界面的破裂和细胞级行为,通过动态偶联ECM性能通过动态偶联ECM性能以使ECM性能与rho和Rac GTP酶活性的激活和RAC GTP酶活性进行动力学偶联。如迁移过程的延伸和缩回。我们的模型最近预测了最近报告的从索倍转到“粘滑”的过渡到“粘滑”,以在增加刚度的eCM上的滑动动力,先前观察到迁移速度对ECM刚度和配体密度的双相依赖,以及我们自己的新型高分辨率测量细胞运动过程中机械抗震动力学。该模型还提供了对电池偏振趋势的机械解释可能影响细胞迁移速度对ECM刚度的双相依赖性。该模型使我们能够单独探测影响细胞-ECM相互作用的各种参数,并在实验中可能不易易于访问的细胞外条件下模拟细胞迁移响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号