首页> 外文会议>Conference on Plasma Physics >General Features and Solutions of Master Equation for equilibrium structures in complex plasmas
【24h】

General Features and Solutions of Master Equation for equilibrium structures in complex plasmas

机译:复杂等离子体中均衡结构的母部方程的一般特征与解决方案

获取原文

摘要

1. Drag and diffusion coefficients for non-linear dust screening. The balance of forces in self-organized in Master Equations are using dust-ion interaction cross-section with exact formulation of non-linear screening in most developed model [1,2]. For typical experiments in laboratories and on board of International Space Station (ISS) the individual dust screening is non-linear, i.e the parameter B, the ratio of electrostatic energy of ion-grain interaction at the distance of Debye radius to the ion average kinetic energy T_i, is large β>1 (typically β ≈ 20 - 30). Dusty plasmas are considered to. be partially ionized and the ion neutral collisions, determined by ion-neutral mean free path λ, are taken into account together with ion-dust collisions. Normalization of forces F, distances r, dust sizes a, densities and Havnes parameter. P is the following: F → Fλ/T_i;r→ r/λ, a →a/λ, n→ n_i4πe~2λ~2/Ti;n→n_e4πe~2λ/TiP → Z_dn_dn4πeλ/T_i;z → Z_de~2 /aλT_e;τ→ T_i/T_e. Plasma flux and Φ ion drift velocity ware normalized with respect to ion thermal velocity v_(Ti): Φ →ΦT_i//2vTie~2λ~2;u→ui//2vTi. For this normalization non-linearl parameter β the drag coefficient fdr and diffusion coefficient D are determined by expressions: β = za√n/τ, Fdr= Zdfdru/√n;Φ= nu -D(dn/dr). The transport cross-sections for scattering of ions on grains is calculated taking into account both large angle scattering and reflection from potential barriers. It enters both in f_(dr) and D. Linear drag coefficient (for β l)is f_(dr) ∞ β1n(l/β) and cannot be extrapolated to large β and is much larger than the non-linear screening coefficient, but the absolute value of calculated non-linear coefficient is larger, than the maximum possible linear one estimated for β≈ 1. The numerical calculation of f_(dr) as function of uand β have shown that after some increase with β the drag coefficient is decreasing with an increase of β. The maximum drag is 2-3 times larger than that calculated in [3] and is close to that obtained in some numerical simulation of [4]. Contrary to [4] the calculations are able to give f_(dr) in broad range of u(-4 < u < 4) and β (3 < β < 90. The results are numerical continuous functions of f_(dr) an D appropriate for solutions of Master Equations for structures. An example of these results for f_(dr) are presented on Fig. 1. Both ion-neutral and ion dust collisions are taken into account in diffusion coefficient which was found as numerical continuous function of 3 parameter u, β, p = P/2√n and an examples of these results is presented on Fig. 2.
机译:1.用于非线性粉尘筛选的阻力和扩散系数。在大多数开发的模型中,使用母离子相互作用横截面,使用粉尘离子相互作用横截面,精确配制非线性筛选[1,2]。对于实验室和国际空间站(ISS)的典型实验(ISS),单个除尘是非线性的,即参数B,离子晶粒相互作用的静电能量与离子均线的距离相互作用的比率能量T_I,是大β> 1(通常β≈20-30)。尘土飞扬的等离子体被认为是。通过离子中性平均自由路径λ确定部分电离,离子中性碰撞,与离子灰尘碰撞一起考虑。迫使F,距离R,灰尘尺寸A,密度和HAVENS参数的归一化。 p是以下内容:f→fλ/ t_i; r→r /λ,a→a /λ,n→n_i4πe〜2λ〜2 / ti; n→n_e4πe〜2λ/ ti p→z_dn_dn4πeλ/ t_i; z→z_de 〜2 /Aλt_e;τ→t_i / t_e。等离子体磁通和φ离子漂移速度百分比相对于离子热速度V_(TI)标准化:φ→φT_I/ / 2Vtie〜2λ〜2; U→UI // 2VTI。对于这种归一化非线性参数β通过表达式确定拖动系数FDR和扩散系数D:β=Za√n/τ,fdr = zdfdru /√n;φ= nu -d(dn / dr)。考虑到潜在屏障的大角度散射和反射,计算用于散射晶粒上的离子散射的传输横截面。它进入F_(DR)和D.线性阻力系数(对于β L)是F_(DR)∞β1n(L /β),不能推断为大β,远远大于非线性筛选计算的非线性系数的绝对值比β≈1的最大可能的线性估计的最大可能的线性值较大。根据UANDβ的功能,F_(DR)的数值计算已经显示出在β的情况下增加拖动随着β的增加,系数正在减小。最大拖动比[3]中计算的最大拖动是2-3倍,并且接近在[4]的某些数值模拟中获得的。与[4]相反,计算能够在宽范围为U(-4

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号