首页> 外文会议>International Conference on Microwave Radar and Wireless Communications >Radar techniques to study subsurfaces and interiors of the solar system objects
【24h】

Radar techniques to study subsurfaces and interiors of the solar system objects

机译:学习太阳系对象的地产和内部的雷达技术

获取原文

摘要

Over the past decades, a number of different Synthetic Aperture Radars (SAR) were developed for mapping the surface of the planets either from Earth or from orbiting spacecrafts. However, the idea to use radar to study the subsurface started to develop during the last 15 years. The ability of the radio waves to penetrate the ice, permafrost and arid surface was at the origins of the development of the Ground Penetrating Radars (GPR). GPRs have been widely applied on Earth with a large number of the scientific and industrial applications. The application of GPR to the space exploration relies on the same operation principle but requires the development of low power and low mass equipment. In this paper, we start by a short summary of the general electromagnetic behavior of the materials that determines the principal characteristics of ground penetrating instruments. Then we describe the GPR instrument that was developed for the Mars 1998 mission (unfortunately cancelled) and we discuss a general GPR design that can be implemented on future rover missions. The measurements from the surface cannot replace the global mapping from orbit using orbital radar sounders. MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) [1] and SHARAD (SHAllow subsurface RADar) [2] radars are examples of these orbital radar sounders that are now in Mars orbit on the Mars Express (ESA) and MRO (NASA) spacecrafts. The Lunar radar Sounder (LRS) on the Japanese mission Kaguya (Selene) (2007–2009) was the radar sounder on the Moon [9]. These radars work essentially in the altimeter mode even if some Doppler treatment is implemented and used in the data analysis. Another major milestone in planetary radar application will be once the radar tomography of the interior of the small objects is achieved. We discuss this new concept on the example of Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) [3], the experiment on the mission ROSETTA (ESA).
机译:在过去的几十年中,开发了许多不同的合成孔径雷达(SAR),用于从地球或从轨道航天器映射行星的表面。然而,使用雷达研究地下的想法在过去的15年里开始发展。无线电波穿透冰,永久冻土和干旱表面的能力是地面穿透雷达(GPR)的开发的起源。 GPRS已广泛应用于地球上,具有大量科学和工业应用。 GPR在空间勘探中的应用依赖于相同的操作原理,但需要开发低功率和低质量设备。在本文中,我们首先开始概要材料的一般电磁行为,这些材料决定了地面穿透仪器的主要特征。然后,我们描述了为MARS 1998 Mission开发的GPR文书(不幸的是取消),我们讨论了一般的GPR设计,可以在未来的流动站任务中实施。表面的测量不能替换使用轨道雷达探测器从轨道取代全局映射。 Marsis(Mars先进的地下和电离层发出声音的雷达)[1]和Sharad(浅层地下雷达)[2]雷达是现在在火星表达(ESA)和MRO(NASA)的火星轨道上的这些轨道雷达探测器的示例宇宙飞船。日本Mission Kaguya(Selene)(2007-2009)的月球雷达音响(LRS)是月球上的雷达声音[9]。即使在数据分析中实现并使用了一些多普勒处理,这些雷达的工作基本上在高度计模式下工作。行星雷达应用中的另一个主要里程碑将是一旦达到了小物体内部的雷达层析。我们通过RadiOWave传输(连通)[3],在Mission Rosetta(ESA)的实验中讨论了彗星核探测实验的新概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号