首页> 外文会议>Microwave Radar and Wireless Communications (MIKON), 2012 19th International Conference on >Radar techniques to study subsurfaces and interiors of the solar system objects
【24h】

Radar techniques to study subsurfaces and interiors of the solar system objects

机译:研究太阳系物体的地下和内部的雷达技术

获取原文

摘要

Over the past decades, a number of different Synthetic Aperture Radars (SAR) were developed for mapping the surface of the planets either from Earth or from orbiting spacecrafts. However, the idea to use radar to study the subsurface started to develop during the last 15 years. The ability of the radio waves to penetrate the ice, permafrost and arid surface was at the origins of the development of the Ground Penetrating Radars (GPR). GPRs have been widely applied on Earth with a large number of the scientific and industrial applications. The application of GPR to the space exploration relies on the same operation principle but requires the development of low power and low mass equipment. In this paper, we start by a short summary of the general electromagnetic behavior of the materials that determines the principal characteristics of ground penetrating instruments. Then we describe the GPR instrument that was developed for the Mars 1998 mission (unfortunately cancelled) and we discuss a general GPR design that can be implemented on future rover missions. The measurements from the surface cannot replace the global mapping from orbit using orbital radar sounders. MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) [1] and SHARAD (SHAllow subsurface RADar) [2] radars are examples of these orbital radar sounders that are now in Mars orbit on the Mars Express (ESA) and MRO (NASA) spacecrafts. The Lunar radar Sounder (LRS) on the Japanese mission Kaguya (Selene) (2007–2009) was the radar sounder on the Moon [9]. These radars work essentially in the altimeter mode even if some Doppler treatment is implemented and used in the data analysis. Another major milestone in planetary radar application will be once the radar tomography of the interior of the small objects is achieved. We discuss this new concept on the example of Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) [3], the experiment on the mission ROSETTA (ESA).
机译:在过去的几十年中,开发了许多不同的合成孔径雷达(SAR),用于绘制来自地球或轨道飞行器的行星表面图。但是,在过去的15年中,开始使用雷达研究地下的想法开始发展。无线电波穿透冰层,永久冻土和干旱表面的能力是探地雷达(GPR)发展的起源。 GPR已在地球上广泛应用,并具有大量的科学和工业应用。 GPR在太空探索中的应用依赖于相同的操作原理,但需要开发低功耗,低质量的设备。在本文中,我们首先简要介绍了确定地面穿透仪器主要特性的材料的一般电磁性能。然后,我们描述了为1998年火星飞行任务开发的GPR工具(不幸的是取消了),并讨论了可以在未来的漫游者任务中实施的一般GPR设计。从地面进行的测量无法替代使用轨道雷达测深仪从轨道进行的全局测绘。 MARSIS(用于地下和电离层探测的火星高级雷达)[1]和SHARAD(用于浅层地下雷达的雷达)[2]雷达是这些轨道雷达测深仪的示例,它们现在已在Mars Express(ESA)和MRO(NASA)的火星轨道上航天器。日本任务Kaguya(Selene)(2007–2009)的月球雷达测深仪(LRS)是月球上的雷达测深仪[9]。即使在数据分析中实施了某些多普勒处理并将其使用,这些雷达也基本上以高度计模式工作。一旦实现了小物体内部的雷达层析成像,行星雷达应用的另一个主要里程碑将是。我们以无线电波传输的彗核探测实验(CONSERT)[3]为例,对ROSETTA任务(ESA)进行实验,讨论了这一新概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号