首页> 外文会议>ASME International Heat Transfer Conference >NUMERICAL PREDICTION OF MOLTEN METAL JET DYNAMICS, FRAGMENTATION AND SOLIDIFICATION IN A COOLANT POOL
【24h】

NUMERICAL PREDICTION OF MOLTEN METAL JET DYNAMICS, FRAGMENTATION AND SOLIDIFICATION IN A COOLANT POOL

机译:冷却池熔融金属喷射动力学,碎裂和凝固的数值预测

获取原文

摘要

The hydrodynamics of molten metal jet in a coolant pool is characterized by the presence of complex and diverse fluid structures whose formation is facilitated by various modes of instabilities acting on the fluid-fluid interface and the bulk material. The large spectrum of scales involved in these processes and the related non-linearities cloud a clear understanding of the associated physical phenomena. In order to overcome these difficulties, a numerical model has been developed in the current work, which aims to simulate the hydrodynamics, fragmentation and solidification of a molten metal jet in the coolant pool. The work uses an axisymmetric flow solver with the Volume of Fluid (VOF) interface tracking model to evaluate the macro features of the molten metal jet dynamics and to predict the evolution of interfacial instabilities. At the same time, the phenomena at the micro scale is predicted by a Lagrangian particle tracking model that is used to capture the dynamics and the heat interactions of the fragmented droplets formed from the disintegration of molten metal jet. The coupling between the two models is achieved by converting the molten fluid from VOF model into equivalent swarm of particles at the jet breakup length. The ability of the current coupled model is demonstrated using a sample test problem involving the dynamics of molten woods metal jet in a water pool.
机译:冷却剂池中的熔融金属射流的流体动力学的特征在于存在复杂和多样的流体结构,其形成是通过作用在流体 - 流体接口和散装材料上的各种不稳定性的形成。这些过程中涉及的大尺度和相关的非线性云涉及对相关物理现象的清楚了解。为了克服这些困难,目前的工作中已经开发了一种数值模型,旨在模拟冷却剂池中熔融金属射流的流体动力学,碎片和凝固。该工作使用具有流体(VOF)界面跟踪模型的体积的轴对称流动求解器,以评估熔融金属射流动力学的宏观特征,并预测界面不稳定性的演变。同时,通过拉格朗日粒子跟踪模型预测微尺度的现象,用于捕获由熔融金属射流的崩解形成的碎裂液滴的动态和热相互作用。通过将来自Vof模型的熔融流体转化为在喷射分解长度的等效颗粒中的熔融流体来实现两种模型之间的耦合。使用涉及水池中熔融林金属喷射的动态的样本测试问题来证明电流耦合模型的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号