首页> 外文会议>European Conference on the Mathematics of Oil Recovery >Analysis of Adaptive Grid Refinement in Field-scale Simulations of Hybrid Heavy Oil Recovery
【24h】

Analysis of Adaptive Grid Refinement in Field-scale Simulations of Hybrid Heavy Oil Recovery

机译:杂交重油回收现场模拟的自适应网格精制分析

获取原文

摘要

Hybrid steam-solvent or solvent-based thermal recovery methods for heavy oils become interesting and important, and have recently been field-tested. The intrinsic advantages of this technology include oil production acceleration, higher ultimate recovery factor, reduction of energy and water treatment expenses, better control of GHG emission etc. As a rule the complex production mechanism related to highly improved initial oil mobility occurs during hybrid process. It comprises gravity drainage and locally viscous-dominating flow, phase transitions. diffusion/dispersion liquid component transport, heat conduction and advection within the multicomponent thermodynamics framework. As almost all these phenomena take place in narrow zone close to the gas chamber (GC) contact with initial (cold) oil, it seems evident that an adequate spatial representation of complex physics required special efforts. Typically the reservoir simulation models are built on numerical grid with cell sizes making impossible accurate description of heat and mass transport at the edge of the GC. Along with this outside this zone this typical grid can be acceptable. The adaptive grid refinement (AGR) may offer a compromise solution if the numerical model accepts the necessary degree of refinement. In our current work, we present a methodology of field-scale numerical simulations for solvent-assisted thermal recovery of heavy oil using AGR. Comparison is performed between oil production mechanisms interaction for typical Athabasca bitumen and for different discretization size In many cases a choice of trigger variable was critical. The numerical performance including the CPU time analysis is presented in some detail.
机译:杂交蒸汽溶剂或溶剂的重油的热回收方法变得有趣,重要,最近经过现场测试。该技术的内在优点包括石油生产加速,较高的最终回收因子,减少能源和水处理费用,更好地控制温室气体排放等。通常在杂交过程中发生与高度改善的初始油动流动相关的复杂生产机制。它包括重力排水和局部粘性主导流动,相变。多组分热力学框架内的扩散/分散液体成分传输,热传导和平流。尽管几乎所有这些现象都在靠近储气室(GC)接触的狭窄区域与初始(冷)油,但它似乎很明显,即复杂物理学的足够空间表示需要特殊努力。通常,储存器模拟模型是在数控网格上建立的,其具有细胞尺寸,使得在GC的边缘处的热量和质量传输的不可能精确描述。随着这个区域之外,这个典型的网格可以是可接受的。自适应网格细化(AGR)如果数值模型接受必要的细化程度,则可以提供妥协解决方案。在我们目前的工作中,我们提出了一种用于使用AGR的溶剂辅助热回收溶剂辅助热回收的现场级别数值模拟方法。在典型的athabasca沥青和不同离散化尺寸的典型Athabasca沥青的相互作用之间进行比较在许多情况下,触发变量的选择至关重要。一些细节介绍了包括CPU时间分析的数值性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号