首页> 外文会议>International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components >Nondestructive Characterization of Neutron Induced Embrittlement in Nuclear Pressure Vessel Steel Microstructure by using Electromagnetic Testing
【24h】

Nondestructive Characterization of Neutron Induced Embrittlement in Nuclear Pressure Vessel Steel Microstructure by using Electromagnetic Testing

机译:用电磁试验无损表征核压力容器钢微观结构中的中子诱导脆化

获取原文

摘要

By using nuclear power for energy generation the pressure vessel wall is exposed to neutron fluences of different levels depending on the distance to the core. Hence materials undergo a change in their microstructure in terms of embrittlement, to be measured as toughness reduction and shift of the Ductile-to-Brittle Transition Temperature (DBTT) to higher temperatures. Normally plant safety concerning this change in microstructure is assured by destructively testing surveillance samples. These are standard tensile and ISO V-specimen which consist of exactly the same material as the pressure vessel and its weld metal, being exposed to accelerated irradiation rates within special irradiation channels allowing a pronounced ageing. It is demonstrated that electromagnetic parameters allow to characterize the changes in the microstructure generated through neutron irradiation. After a defined calibration process a quantitative characterization of the embrittlement especially in terms of the shift of the DBTT is possible. This has been demonstrated for reactor pressure vessel steels used in nuclear power plants of eastern and western designs. As testing methods 3MA (Micromagnetic, Multiparameter, Microstructure and stress Analysis) [1] and the dynamic magnetostriction using EMAT (Electromagnetic Acoustic Transducers) have been applied in a nondestructive combination measurement system. Further experiments show the possibility to measure 3MA and dynamic magnetostriction quantities through an 8 mm thick austenitic stainless steel cladding.
机译:通过使用核电来产生压力容器壁,根据与核心的距离暴露于不同水平的中子流量。因此,材料在脆化方面经历了它们的微观结构的变化,以被测量为韧性降低和延伸到脆性转变温度(DBTT)的较高温度。通常通过破坏性地测试监测样本来确保有关这种微观结构变化的植物安全性。这些是标准拉伸和ISO V样本,其由与压力容器的完全相同的材料和其焊接金属组成,暴露于特殊辐射通道内的加速照射率,允许发音老化。证明电磁参数允许表征通过中子辐射产生的微观结构的变化。在定义的校准过程之后,可以在DBTT的偏移方面进行脆化的定量表征。这已经证明了东方和西方设计的核电厂使用的反应堆压力容器钢。作为测试方法,使用EMAT(电磁声换能器)的3mA(微磁性,多量子计,微观结构和应力分析)[1]和使用EMAT(电磁声换能器)的动态磁致伸缩在非破坏性组合测量系统中。进一步的实验表明,通过8mm厚的奥氏体不锈钢包层测量3mA和动态磁致伸缩量的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号