首页> 外文会议>ASME Global Congress on Nanoengineering for Medicine and Biology >INTERACTION WITH NANOSCALE TOPOGRAPHY: THE USE OF NANOWELL-TRAPPED CHARGED LIGAND-BEARING NANOPARTICLE SURFACES TO MODULATE PHYSIOLOGICAL FOCAL ADHESIONS IN ENDOTHELIAL CELLS
【24h】

INTERACTION WITH NANOSCALE TOPOGRAPHY: THE USE OF NANOWELL-TRAPPED CHARGED LIGAND-BEARING NANOPARTICLE SURFACES TO MODULATE PHYSIOLOGICAL FOCAL ADHESIONS IN ENDOTHELIAL CELLS

机译:与纳米级地形的相互作用:使用纳米晶簇带式的带状配体纳米粒子表面来调节内皮细胞中的生理局灶性粘连

获取原文

摘要

Achieving cell adhesion, growth and homeostasis on an underlying biomaterial surface may be a desirable feature in implant device design and tissue engineering. Insight has been gained from numerous cell patterning strategies where spatial cues and physical constraints have been shown to regulate the structure and function of cells. Despite significant advances in modifying substrates for cellular attachment, migration and proliferation, the achievement of confluent and aligned growth of functional endothelial cells on cardiovascular blood-contacting implants under physiologically significant wall shear stress has proven difficult. Recently we have reported on a method that enhances cellular adhesion under flow conditions on synthetic polymer surfaces, without reliance on pro-adhesive protein biomaterials, which are often thrombogenic. In this method we utilize electron beam lithography and size-dependent self-assembly to fabricate line arrays of nanowells allowing entrapment and retention of charged nanoparticles, covalently conjugated with a RGD adhesive ligand, GRGDSPK. This approach is an additive strategy of combining substrata topographic alteration, electrostatic charge and biochemical ligands, all uniquely incorporated as an ensemble of charged, ligand-bearing nanoparticles entrapped in arrays of nanowells. However, the modulation of endothelial cell physiologic mechanisms as a result of ensemble surface exposure remains to be characterized. In this report, we extend our studies and probe cell physiologic mechanisms altered as a result of nanofeatured surface exposure. We first examined the functional intactness or normalcy of endothelial cells adherent to the nanofeatured ensemble surface utilizing standard immunostaining and flow cytometry methods. We found β1-integrin expression dominated quiescent adherent endothelial cells while αVβ3-integrins expression was more common in migratory cells. Endothelial cells were noted to express high levels of PECAM-1 over time when exposed to nanofeatured surface and RGD peptides. For understanding the contribution of the nanofeatured surface (entrapped RGD conjugated nanoparticles) to cell adhesion, cytochalasin B was used to alter cell spreading. Confocal microscopy illustrated the uptake of nanoparticles in endothelial cells on composite surfaces, as well as the inhibition of this endocytosis by cytochalasin B. After prohibiting the cells from engulfing nanoparticles, we found an 80% reduction in cell adhesion; suggesting that an endocytic mechanism might play a role in maintaining cell adhesion. Nanofeatured ensemble surfaces appear to be good substrates for achieving a high level of EC adhesion, with maintained growth and stability.
机译:在底层的生物材料表面实现细胞粘附,生长和稳态可在植入装置的设计和组织工程的期望的特征。洞察已经从其中的空间提示和物理约束已显示出调节细胞的结构和功能的许多细胞图案化策略获得的。尽管修改用于细胞附着,迁移和增殖,汇合的实现和生理学显著壁剪切应力下对心血管血液接触的植入物官能内皮细胞的定向生长衬底显著进步已经证明,很难。最近,我们报道了增强的合成聚合物的表面上流动条件下的细胞粘附,而不对亲黏着蛋白的生物材料,这往往是血栓形成性的依赖的方法。在该方法中,我们利用电子束光刻和尺寸相关的自组装纳米孔以允许截留和带电的纳米粒子的保留的编造线阵列,共价与RGD粘合剂配体,GRGDSPK偶联。这种方法是结合基质地形变化,静电荷和生化配体,所有唯一地并入在纳米孔阵列包埋带电的配体的纳米粒子轴承的全体的添加剂策略。然而,内皮细胞生理机制合奏表面暴露的结果,调制保持待表征。在这份报告中,我们扩展我们的研究和探测细胞的生理机制改变为nanofeatured表面暴露的结果。我们首先检查功能完整性或内皮细胞粘附的正常状态到利用标准免疫染色和流式细胞术方法nanofeatured合奏表面。我们发现β1-整合蛋白的表达为主的静态贴壁的内皮细胞,而αVβ3整合素表达在游走细胞较常见。内皮细胞,注意到当暴露于nanofeatured表面和RGD肽随时间的表达高水平的PECAM-1的。对于理解nanofeatured表面的贡献(截留RGD缀合的纳米颗粒)到细胞粘附,细胞松弛素B被用于改变细胞扩散。共聚焦显微镜上示出复合材料表面中的内皮细胞的纳米颗粒的摄取,以及本胞吞作用的抑制通过细胞松弛素B.从吞噬纳米颗粒禁止细胞后,我们发现在细胞粘附减少了80%;这表明内吞作用机制可能在维持细胞粘附中发挥作用。 Nanofeatured合奏表面似乎是用于实现EC粘附高水平的良好底物,以维持生长和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号