首页> 外文学位 >Engineering endothelial cell behavior via cell-surface interactions with chemically-defined nanoscale adhesion sites.
【24h】

Engineering endothelial cell behavior via cell-surface interactions with chemically-defined nanoscale adhesion sites.

机译:通过与化学定义的纳米级粘附位点的细胞表面相互作用来工程化内皮细胞行为。

获取原文
获取原文并翻译 | 示例

摘要

Current biomaterials are designed to be passive in nature to prevent the initiation of adverse immune responses upon contact with biological substances. While this approach of inertness is still a crucial design component for some applications, the possibility of engineering desired cell responses in the local environment of the material exists and is of particular interest in implantable devices and tissue engineered constructs. Fundamental knowledge of the relationships between cell adhesion and gross cell behavior will provide key design criteria for the creation of advanced biomaterials that induced locally controlled cellular responses. This work investigates the possibility of engineering cell behavior by limiting adhesion site maturation. Chemically-defined nanoislands of fibronectin were created using a combination of nanosphere lithography and an orthogonal surface functionalization strategy. Investigation of the adhesive and cytoskeletal components of cells cultured on these surfaces demonstrates that chemically-defined nanopatterns provide an upper size limit to adhesion site growth which in turn influences the degree of cytoskeletal formation. The imposed restriction on adhesion site growth results in the formation of a relatively higher number of more evenly distributed, small adhesions throughout the cell body. The adhesive behavior can be tuned by changing the nanopattern properties with respect to their size, spacing, and density. Furthermore, it is demonstrated that the observed differences in cell adhesion as imposed by the nanopatterned surfaces induces changes in gross cell behavior with respect to spreading, proliferation, and motility. The results presented here parallel observations documented in cells cultured on elastic surfaces and indicate that intracellular signaling cascades initiated and governed by cellular adhesion sites are sensitive to adhesion size/maturation and possibly the amount of force generated locally at these adhesion sites. The conclusions drawn from these studies give insight into the possibility of implementing nanostructured biomaterials for cell engineering purposes and provide design criteria for the next generation of tissue engineered constructs.
机译:当前的生物材料被设计成本质上是被动的,以防止在与生物物质接触时引发不利的免疫反应。尽管这种惰性方法对于某些应用仍然是至关重要的设计组件,但存在在材料的局部环境中工程化所需细胞反应的可能性,并且在可植入设备和组织工程化构造中特别引起关注。有关细胞粘附和总体细胞行为之间关系的基础知识将为创建诱导局部控制细胞反应的高级生物材料提供关键的设计标准。这项工作通过限制黏附部位成熟来研究工程细胞行为的可能性。使用纳米球光刻技术和正交表面功能化策略相结合,创建了纤连蛋白的化学定义纳米岛。对在这些表面上培养的细胞的粘附和细胞骨架成分的研究表明,化学确定的纳米模式为粘附位点的生长提供了大小上限,继而影响了细胞骨架形成的程度。对粘附位点生长的强加限制导致在整个细胞体内形成相对大量的更均匀分布的小粘附力。可以通过改变纳米图案的尺寸,间距和密度来调整其粘合性能。此外,已经证明,观察到的由纳米图案化表面施加的细胞粘附性差异引起了关于扩散,增殖和运动性的总体细胞行为的改变。这里呈现的结果在弹性表面上培养的细胞中记录了平行观察结果,并表明由细胞粘附位点引发和控制的细胞内信号传导级联对粘附力大小/成熟度以及在这些粘附位点局部产生的力的大小敏感。从这些研究中得出的结论使人们深刻了解了为细胞工程目的实施纳米结构生物材料的可能性,并为下一代组织工程构造提供了设计标准。

著录项

  • 作者

    Slater, John Hundley.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 280 p.
  • 总页数 280
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号