首页> 外文会议>Symposium on the Application of Geophysics to Engineering and Environmental Problems >GROUNDWATER SYSTEM CHARACTERIZATION AND MAPPING USING WATER-QUALITY AND HYDROGEOPHYSICAL DATA AND MACHINE-LEARNING WORKFLOWS
【24h】

GROUNDWATER SYSTEM CHARACTERIZATION AND MAPPING USING WATER-QUALITY AND HYDROGEOPHYSICAL DATA AND MACHINE-LEARNING WORKFLOWS

机译:地下水系统表征和使用水质和水文地理数据和机器学习工作流程的映射

获取原文
获取外文期刊封面目录资料

摘要

Multi-step machine-learning (ML) workflows utilize fusion, clustering, and estimation operations on water-quality and hydrogeophysical data to derive hydrostratigraphic units (HSUs). The term HSU refers to spatially-distinct units based on integrating combinations of biologic, chemical, and physical characteristics associated with flow and transport. Data used in this process involves combinations of measured, derived, interpolated, and estimated values. Data fusion results in a hypersurface following the training of a self-organizing map (SOM) with these data. The application of Davies-Bouldin criteria to K-means clustering of SOM nodes determines the number and location of HSUs. Estimation is handled by iterative least-squares minimization of the SOM quantization and topographical errors. The application of ML workflow for characterization of HSUs is done for data collected from different hydrogeologic settings. In workflow 1, the ML sequence is applied to surface-water and groundwater system attributes (aquatic biology, aqueous chemistry, dissolved oxygen, temperature, hydraulic properties, and lithologies) measured across the Southland region, NZ. In workflow 2, the ML sequence is applied to airborne (1D conductivity profiles interpolated to boreholes) and borehole (lithoiogy, induction conductivity, natural gamma, hydraulic conductivity, water content, pH, EC, and TDS) data from locations across a portion of the Broken Hill Managed Aquifer Recharge region of New South Wales, AU. The respective 1D conductivity profiles and hydraulic conductivity are products derived following numerical inversion of AEM and nuclear magnetic resonance. Performance metrics and validation are used to test each step of both workflows.
机译:多步机学习(ML)工作流利用融合,聚类和估算操作对水质和水文级数据来衍生加工单位(HSUS)。术语HSU是指基于整合与流动和运输相关的生物学,化学和物理特性的组合的空间不同的单位。在该过程中使用的数据涉及测量,导出,内插和估计值的组合。数据融合导致在具有这些数据的自组织地图(SOM)的训练之后的超短面条。 Davies-Bouldin标准的应用到k-means集群的SOM节点确定HSU的数量和位置。估计由迭代最小二乘最小化SOM量化和地形错误来处理。为从不同水文地质环境中收集的数据进行了ML工作流程以进行HSU的表征。在工作流程1中,将ML序列应用于南域地区,NZ中的地表水和地下水系统属性(水生生物学,水化学,溶解的氧气,温度,液压性能和岩石)。在工作流程2中,将ML序列施用于空气中(1D导电谱插入到钻孔)和钻孔(立体,感应导电性,天然γ,液压导电性,水含量,水含量,pH,EC和TDS)数据中的一部分破碎的山地管理含水层新南威尔士州奥地第奥布斯地区。各自的1D电导率和液压导电性是源于AEM和核磁共振的数值反演之后的产物。性能指标和验证用于测试两个工作流的每个步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号