首页> 外文会议>American Peptide Symposium >Effects of Mitochondrial-Targeted Antioxidants on Real-Time Blood Nitric Oxide and Hydrogen Peroxide Release in Acute Hyperglycemic Rats
【24h】

Effects of Mitochondrial-Targeted Antioxidants on Real-Time Blood Nitric Oxide and Hydrogen Peroxide Release in Acute Hyperglycemic Rats

机译:线粒体靶向抗氧化剂对急性高血糖大鼠实时血液一氧化氮和过氧化氢释放的影响

获取原文

摘要

Diabetes and prediabetes are major public health concerns worldwide due to the high risk of developing micro-and macro-vascular complications. Hyperglycemia, the major criteria for diabetes diagnosis, is causally related to the pathogenesis of vascular complications in diabetic patients. An early event during hyperglycemia is vascular endothelial dysfunction. Normally, the vascular endothelium facilitates blood flow principally by releasing endothelial-derived nitric oxide (NO) via vascular endothelial NO synthase (eNOS) in the presence of an essential co-factor, tetrahydrobiopterin (BH4). By contrast, acute and chronic hyperglycemia increase oxidative stress and reduce NO bioavailability [1,2]. The reduced endothelial-derived NO bioavailability promotes vasoconstrictive, pro-inflammatory, and pro-thrombotic events, initiating inflammation, thereby recruiting leukocytes, resulting in tissue/organ damage (Figure 1). Therefore, reduction of oxidative stress during hyperglycemia will mitigate vascular endothelial dysfunction and organ damage. Crabtree, et al. [1] found that mitochondria-derived superoxide (SO) contributes to hyperglycemia-induced oxidative stress in cultured vascular endothelial cells. Subsequently, the overproduction of SO promotes the oxidation of BH4 to dihydrobiopterin (BH2). The reduced BH4/BH2 ratio leads to BH2, not BH4, binding to oxygenase domain of eNOS, which causes eNOS to shift its product profile from NO to SO [1] (Figure 1). However, the role of mitochondria in acute hyperglycemia-induced oxidative stress and blood NO reduction has not been evaluated in vivo. Recently, our lab showed that mitoquinone (MitoQ) and SS31 (Szeto-Schiller, D-Arg-Dmt-Lys-Phe-Amide) peptide (Figure 2), mitochondria-targeted antioxidants, significantly reduced blood H2O2 (an index of oxidative stress) and increased blood NO levels in a hind limb ischemia/reperfusion (I/R) animal model [3]. Oxidative stress is also an important cause of reperfusion injury during I/R. Thus, we hypothesize that MitoQ and SS-31 will reduce blood oxidative stress and increase blood NO levels under acute hyperglycemic conditions.
机译:由于发育微观和宏观血管并发症的风险很高,糖尿病和前脂肪都是全世界的主要公共卫生问题。高血糖症是糖尿病诊断的主要标准,与糖尿病患者血管并发症的发病机制有关。高血糖期的早期事件是血管内皮功能障碍。通常,血管内皮促进血流主要通过在必需的副因子(BH4)存在下通过血管内皮没有合成酶(ENOS)释放内皮衍生的一氧化物(NO)。相比之下,急性和慢性高血糖增加氧化应激并减少生物利用度[1,2]。降低的内皮源性衍生的生物利用度促进了血管收缩,促炎和促血栓形成事件,从而引发炎症,从而募集白细胞,导致组织/器官损伤(图1)。因此,高血糖期间的氧化应激降低将减轻血管内皮功能障碍和器官损伤。 Crabtree等。 [1]发现线粒体衍生的超氧化物(SO)有助于培养的血管内皮细胞中的高血糖诱导的氧化应激。随后,促进BH4氧化至二氢屈出蛋白(BH2)的过度生产。降低的BH4 / BH 2比率导致BH2,而不是BH4,与浓缩酶的结合,这导致eNOS将其产物曲线从NO移位,因此[1](图1)。然而,线粒体在急性高血糖诱导的氧化应激和血液中的作用尚未在体内评估没有减少的。最近,我们的实验室表明,Mitoquinone(MitoQ)和SS31(Szeto-Schiller,D-Arg-DMT-Lys-Phe-amide)肽(图2),线粒体靶向抗氧化剂,显着降低了血液H2O2(氧化应激指数)在后肢缺血/再灌注(I / R)动物模型中增加了血液没有水平[3]。氧化应激也是I / R期间再灌注损伤的重要原因。因此,我们假设MITOQ和SS-31将降低血液氧化应激,并在急性高血糖条件下增加血液。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号