【24h】

Photon Science at Modern Light Sources

机译:现代光源的光子科学

获取原文

摘要

More than 50 large x-ray and UV light sources based on high-energy electron accelerators are in operation around the world, serving a scientific community numbering in the tens of thousands. These sources generate synchrotron radiation from accelerated electrons or positrons. The development of synchrotron light sources over the last 40 years has fueled an exponential increase in x-ray source brightness of more than 10 orders of magnitude. The next large advance in source potential is now underway, with the commissioning of the first x-ray Free-Electron Laser (FEL) sources. Using high-energy electron linear accelerators, these facilities produce sub-picosecond pulses of hard x-rays with peak brightness more than 10 orders of magnitude greater than current synchrotron facilities. FEL x-ray facilities will soon be operational in the US, Japan, and Germany.Research at modern light sources makes use of a wide range of experimental techniques. Many experiments are designed to study the structure of matter at the atomic scale using elastic x-ray scattering. This technique has been particularly effective for determining the structures of biological molecules, such as proteins, viruses, and drugs. Inelastic x-ray scattering, or x-ray absorption followed by emission of electrons or photons, can give information about the electronic structures of atoms, which can be used to deduce local environment information such as atomic species, bonding state, geometry of neighboring atoms, or magnetic state. For some techniques involving x-ray emission from a sample, cryogenic detectors with energy resolution at the –10 eV level or better would be very helpful. Shifts in electron energy levels associated with bonding states and magnetic states are typically several eV, while the energy structure associated with Compton inelastic scattering is typically in the range of a few tens of eV. Current energy-resolving detectors used at synchrotron light sources are hampered by either poor energy resolution (-100 eV for solid state detectors), or very poor angular acceptance (10~(-3) sr or worse for grating and crystal analyzer detectors).Photon detectors at synchrotron light sources can be presented with very high signal count rates. At the new FEL sources, this issue will be especially acute, since each sub-picosecond pulse will deliver the flux produced in one second by a synchrotron. This invites the use of multiple small detectors to spread the load. The ideal energy-resolving detector for x-ray science at modern light sources would combine eV-level energy resolution, 100-gm pixel size, and a low per-pixel cost allowing several megapixels to be deployed.
机译:50多家大型X射线和基于高能电子加速器UV光源在世界各地的操作,在数以万计的服务于科学界的编号。这些源产生从加速电子或正电子的同步加速器辐射。的同步加速器在过去40年光源的发展起到了推波助澜的幅度超过10项目x射线源亮度的指数增长。在源极电位下一个大的进步,现在正在进行中,第一个X射线自由电子激光(FEL)来源的调试。使用高能量的电子线性加速器,这些设施产生的硬X射线与峰值亮度超过10个数量级更大的比目前的同步加速器设施亚皮秒脉冲。 FEL X射线设备将很快投入运营,在美国,日本和Germany.Research在现代光源利用了广泛的实验技术。许多实验设计来研究物质的结构,在使用弹性X射线散射原子尺度。该技术已经用于确定生物分子,如蛋白质,病毒,和药物的结构特别有效。无弹性x-射线散射,或X射线吸收,随后电子或光子的发射可提供有关原子的电子结构,其可以被用来推断本地环境信息,诸如原子物质,键合状态,相邻的原子的几何形状的信息或磁状态。对于涉及从样品的X射线发射的一些技术,用在-10 EV电平能量分辨率或更好的低温检测器将是非常有益的。与键合状态和磁性状态相关联的电子能级跃迁典型地是几个电子伏特,而与康普顿非弹性散射有关的能量结构通常在几十电子伏特的范围内。在同步辐射光源使用当前能量分辨检测器由任一能量分辨率差(-100伏特为固态检测器),或非常差的角度接受阻碍(10〜(-3)SR或光栅和晶体分析器检测器差)。在同步辐射光源的光子检测器可以用非常高的信号的计数率来呈现。在新的FEL源,这个问题将是特别严重的,因为每个子皮秒脉冲将提供由同步加速器在一秒产生的磁通。这个邀请使用多个小的探测器以分散负荷。在现代光源的X射线科学理想的能量分辨探测器将结合EV-级能量分辨率,100克的像素尺寸和更低的每像素成本允许部署数百万像素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号