首页> 外文会议>AIAA Aerospace Sciences Meeting Exhibit >LES of a Supersonic Combustor with Variable Turbulent Prandtl and Schmidt Numbers
【24h】

LES of a Supersonic Combustor with Variable Turbulent Prandtl and Schmidt Numbers

机译:具有可变湍流Prandtl和Schmidt数字的超音速燃烧器的LES

获取原文

摘要

The analysis of the physics of supersonic combustion has pointed out that in supersonic flows the compressibility plays a key role on mixing and combustion. In fact, despite Papamoschou and Rosko stated that compressibility suppress the vertical motion at Mac>0.6, the dimensionless analysis reported below shows that increasing the streamwise vorticity, mixing is fast and efficient. In particular, by analyzing the dimensionless Navier-Stokes equations, it conies out that baroclinic and compressibility terms become important in the supersonic regime. Furthermore, at Ma>l also chemical kinetics and combustion are influenced by the dilatational term "V-u". A new subgrid scale model (ISCM) for Large Eddy Simulation has been derived taking into account the effect of the Mach number (Ma) on mixing and combustion. Large Eddy Numerical simulations of a supersonic combustion NASA-Langley test case1 have shown that the ISCM subgrid model is in a better agreement with experimental data than the Smagorinsky-Lilly model2: in fact, while the Smagorinsky-Lilly model predicts neither combustion nor vortex structures, the ISCM model predicts flame anchoring, streamwise vorticity and temperatures close to those observed in the experiments. However, while experiments show a more distributed combustion, numerical simulations show that combustion is confined near the air/Eb interface. This could be due to the assumption of a constant turbulent Schmidt number. By looking at the physics of the small scales and at their influence on the scalars turbulent transport, a novel SGS model for the turbulent difFusivity has been developed. In this new SGS model, the scalars transport is no longer supposed to be proportional only to the eddy viscosity, i.e. to the small scales turbulent velocity, but also to scalars fluctuations that must be accounted for. This advance in the ISCM model may therefore be the key to better reproduce experimental results.
机译:超声燃烧物理学的分析指出,在超音速流动中,压缩性在混合和燃烧上起关键作用。事实上,尽管Papamoschou和Rosko表示,压缩性抑制Mac> 0.6的垂直运动,但下面报道的无量纲分析表明,增加了流动涡度,混合是快速有效的。特别是,通过分析无量纲的Navier-Stokes方程,它涉及曲金和可压缩性术语在超音速制度中变得重要。此外,在MA> L中也受到化学动力学和燃烧的影响受扩张项“V-U”的影响。考虑到Mach数(MA)对混合和燃烧的影响,已经推出了一种用于大涡模拟的新的Subrid刻度模型(ISCM)。超音速燃烧NASA-Langley测试案例的大型涡流数值模拟表明,ISCM SubLid模型与实验数据更好地与Smagorinsky-Lilly Model2更好:实际上,Smagorinsky-Lilly模型既不预测燃烧也不预测涡旋结构,ISCM模型预测火焰锚定,靠近实验中观察到的火焰锚定,流动涡度和温度。然而,虽然实验表明了一种更分散的燃烧,但数值模拟表明,燃烧局限于空气/ eb界面附近。这可能是由于假设恒定的湍流施密特数。通过观察小尺度的物理,并对标量湍流运输的影响,已经开发了一种用于湍流扩散率的新型SGS模型。在这个新的SGS模型中,标量传输不再被认为是比例仅在涡粘度上成比例,即小尺度湍流速度,也是必须考虑的标量波动。因此,ISCM模型中的这一前进可以是更好地再现实验结果的关键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号