首页> 外文会议>Annual conference and expo of the International Erosion Control Association >Slope Erosion Testing - Identifying 'Critical' Parameters
【24h】

Slope Erosion Testing - Identifying 'Critical' Parameters

机译:斜率侵蚀测试 - 识别“关键”参数

获取原文

摘要

Various large-scale tests have been used to evaluate the performance of erosion control products. These tests typically are performed using boundary conditions that attempt to simulate field conditions. When evaluating slope erosion, for instance, a full-scale slope is generally eroded by rainfall impact and associated sheet runoff forces resulting from a simulated rainfall event. A certain combination of steepness, width and length of slope is selected, and the soil type, thickness, and compaction characteristics are chosen. The amount of soil loss from a protected condition is compared to that of the unprotected, or control, in order to establish product performance. In one such procedure, 6-inch thick compacted soil plots placed on a free draining tilt-table platform measuring 6 ft×30 ft are used. Other tilting bed facilities use shorter and narrower plots, and different synthetic rainfalls. Still other facilities do the testing in-situ, out-of-doors, with even different dimensions, rainfall conditions, and soil type, preparation, and subgrade drainage. With this variety of approaches to testing, it is important to understand what mechanisms may or may not develop under modeled conditions and whether the associated mechanism depends on the type of erosion control product being tested and/or how it is installed. Specifically, some products armor the slope, encouraging efficient overland runoff, while other products encourage infiltration by absorbing the rainfall. Still other products seek to balance the two approaches to erosion control. Excess runoff may overwhelm surface "armoring", while high infiltration rates may lead to slope instability, especially for steeper slopes. This paper uses the Revised Universal Soil Loss Equation (RUSLE) to consider the various parameters associated with large-scale slope evaluations and identifies the "critical" parameters associated with slope stability. Practical test results are also presented to support the analytical findings and demonstrate that the ASTM 6459 protocol reasonably agrees with theoretical RUSLE-based calculations. It is not clear if other (tilting bed) protocols similarly correlate.
机译:各种大规模测试已被用于评估侵蚀控制产品的性能。这些测试通常使用尝试模拟现场条件的边界条件来执行。例如,当评估坡侵蚀时,全尺寸斜率通常通过降雨量的影响和相关的纸张径流力侵蚀,从而产生了模拟的降雨事件。选择陡峭,宽度和长度的某种组合,选择土壤型,厚度和压实特性。将保护条件的土壤损失量与未受保护或控制的土壤损失相比,以建立产品性能。在一种这样的手术中,使用6英寸厚的压实土壤图,放置在空闲排放的倾斜台平台上,测量6英尺×30ft。其他倾斜床设施使用较短和较窄的地块以及不同的合成降雨。其他设施仍然进行原位测试,遥远,甚至具有不同的尺寸,降雨条件和土壤类型,制备和路基排水。通过这种测试方法,重要的是要理解哪些机制可能在建模条件下可能不会发生,以及相关机制是否取决于正在测试的侵蚀控制产品的类型和/或如何安装。具体而言,一些产品铠甲坡,鼓励高效的陆上径流,而其他产品则通过吸收降雨来促进渗透。其他产品寻求平衡两种侵蚀控制的方法。过量的径流可能会压倒表面“装甲”,而高渗透速率可能导致坡度不稳定,特别是对于陡峭的斜坡。本文使用修订后的通用土壤损失方程(风格)考虑与大规模斜率评估相关的各种参数,并识别与斜率稳定相关的“关键”参数。还提出了实际测试结果以支持分析结果,并证明ASTM 6459协议合理同意理论基于风险的计算。如果其他(倾斜床)协议类似地相关,则不透明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号