首页> 外文会议>International Association of Theoretical and Applied Limnology >Spatial synchrony in microbial community dynamics: testing among-year and lake patterns
【24h】

Spatial synchrony in microbial community dynamics: testing among-year and lake patterns

机译:微生物群落动态的空间同步:在一年中测试和湖泊模式

获取原文

摘要

Quantifying the relative influence of forces that determine population and community dynamics is essential to our understanding of microbial function in lakes. Both intrinsic (sitespecific) and extrinsic (regional) factors have the potential to influence ecosystems, but the relative importance of each is currently the subject of considerable discussion (HUDSON & CATTADORI 1999, RUSAK et al. 1999, BJORNSTAD & GRENFELL 2001, LIEBHOLD et al. 2004, HESSEN et al. 2006). Lakes are model systems for examining the role of intrinsic and extrinsic drivers of microbial communities; distinct shoreline boundaries allow us to easily partition forces acting from within and outside the system. Regional extrinsic factors can impart synchrony to the dynamics of various ecosystem parameters (LIEBHOLD et al. 2004), and variables such as temperature and water chemistry have strong interannual synchrony across lakes in a region (MAGNUSON et al. 1990, KRATZ et al. 1998). Lake-specific intrinsic drivers, such as food-web interactions and stochastic population dynamics, typically dampen such patterns in plankton (RUSAK et al. 1999, BAINES et al. 2000, MAGNUSON et al. 2005). Earlier work exploring the relative importance of extrinsic and intrinsic factors in ecology has typically examined population synchrony (GRENFELL et al. 1998, Hu DSON & CATTAnon 1999, RUSAK et al. 1999). In this context, spatial synchrony (or temporal coherence; MAGNUSON et al. 1990) refers to correlated temporal variability in the abundance of a particular taxon among sites, usually within regions (DEBHOLD et al. 2004). In the absence of dispersal, synchrony among populations is often attributed to the "Moran effect," synchrony that is plausibly correlated with extrinsic climatic drivers (MORAN 1953) or to trophic interactions with populations that exhibit spatial synchrony (GRENFELL et al. 1998, HUDSON & CATTADORI 1999, LIEBHOLD et al. 2004). From a community perspective, concordance is an analogous concept that quantifies the degree to which spatial patterns in community structure are similar among locations or co-occurring taxonomic groups (PASZKOWSKI & TONN 2000, PERES-NETO & JACKSON 2001). Applied across time rather than space, `temporal concordance' implies that changes in community structure occur at the roughly the same time and pace among different communities, thus providing a very useful approach to quantifying synchrony from a community perspective (KENT et al. 2007). KENT et al. (2007) documented strong synchrony in the seasonal dynamics of microbial communities among 6 lakes in northern Wisconsin over the course of a single year using unaggregated intro-annual "species" level data. With generation times on the scale of days and the ability to adapt to environmental change over the course of a season, intra-annual time intervals for microbes may be somewhat analogous to annual dynamics for longer-lived organisms. We now have the opportunity to revisit this question of synchrony with another year of bacterial community composition (BCC) data in 2 of the same 6 lakes using a highly aggregated data set. Thus, using these data, we (1) test for ongoing synchrony in BCC among lakes with an additional year of data, and (2) compare patterns among years to explore both similarities and differences in the predictability and consistency of BCC and dynamics.
机译:量化确定人口和社区动态的力的相对影响对于我们对湖泊微生物功能的理解至关重要。内在(内在)和外在(区域)因素都有可能影响生态系统,但每个人的相对重要性是目前是相当大讨论的主题(Hudson&Cattadori 1999,Rusak等人1999,Bjornstad&Grenfell 2001,Liebhold等Al。2004,Hessen等人。2006)。湖泊是检查内在社区内在和外在司机的作用的模型系统;独特的海岸线边界允许我们轻松分配从系统内外行动的部队。区域外在因素可以赋予各种生态系统参数的动态的同步(Liebhold等,2004),以及温度和水化学等变量在一个地区的湖泊中具有强大的持续同步(Magnuson等,1990,Kratz等,1998 )。湖泊特定的内在司机,如食品网相互作用和随机人口动态,通常抑制浮游生物(Rusak等,1999,Baines等,2000,Magnuson等,2005)。早期的工作探索了生态学中外在和内在因素的相对重要性,通常探讨了人口同步(Grenfell等,1998,1998,Hu Dson&Cattanon 1999,Rusak等人1999)。在这种情况下,空间同步(或时间一致; Magnuson等,1990)是指通常在地区内的场地之间的特定分类的丰富的时间变异性(Debhold等,2004)。在没有分散的情况下,人群中的同步往往归因于“莫兰效应”,与外在气候司机(Moran 1953)或与展出空间同步的人群的营养相互作用(Grenfell等,1998,Hudson的营养交互的同步&Cattadori 1999,Liebhold等人。2004)。从社区的角度来看,一致性是一种类似的概念,这些概念量化了社区结构中空间模式的程度在地区或共同发生的分类群之间(Paszkowski&Tonn 2000,Peres-Neto&Jackson 2001)。应用跨越时间而非空间,`时间一致性”意味着在社会结构的变化发生在不同社区之间的大致相同的时间和速度,从而提供量化同步一个非常有用的方法从社区的角度(Kent等人,2007年) 。肯特·埃尔。 (2007年)在威斯康星州北部6湖中的季节性动态上记录了季节性动态的强大同步,在一年中,使用未聚集的介绍年度“物种”级别数据。在日期的一代数量和适应环境变化的能力的情况下,微生物的年度时间间隔可能有点类似于长期生物的年动态。现在,我们有机会在使用高度聚集的数据集相同的6个湖泊2重温同步的这个问题与细菌群落结构(BCC)数据的一年。因此,使用这些数据,我们(1)在湖泊中的BCC中的持续同步测试,其中一年的数据,(2)多年来比较模式,以探索BCC和动态的可预测性和一致性的相似之处和差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号