首页> 外文会议>International Conference on Recent Progress in Many-Body Theories >ENTANGLEMENT PERCOLATION IN QUANTUM NETWORKS:HOW TO ESTABLISH LARGE DISTANCE QUANTUMCORRELATIONS?
【24h】

ENTANGLEMENT PERCOLATION IN QUANTUM NETWORKS:HOW TO ESTABLISH LARGE DISTANCE QUANTUMCORRELATIONS?

机译:Quantum网络中的纠缠渗透:如何建立大距离量子套件?

获取原文

摘要

Quantum communication networks consist of N distant nodes sharing a quantum state.By means of local operation in each node assisted by classical communication, the nodestry to transform the initial state into perfect quantum correlations, that later will beused to perform a quantum information task, such as quantum teleportation or quantumcryptography. Given a network, defined by a geometry of nodes and connections, it iscrucial to understand whether it is possible to establish long-distance quantum correla-tions, in the sense that the correlations between two end points of the network do notdecrease exponentially with the number of intermediate connections. In this contribu-tion, we present our recent findings on the distribution of entanglement through quan-tum networks. In the case of one-dimensional chains of connected quantum systems, theresults are hardly surprising: a non-exponential decay is possible only when the entangle-ment in the connections between nodes is larger than a maximally entangled state of twoqubits. The picture becomes much richer and interesting for networks of dimension largerthan one: long-distance correlations can be established even when the connecting nodesare not maximally entangled. Actually, the problem of establishing maximally entangledstates between nodes is related to classical percolation in statistical mechanics. We show,then, that statistical concepts, such as percolation and phase transitions, can be usedto optimize the entanglement distribution through quantum networks. Remarkably, thequantum features allow going beyond the known results for classical percolation, givingrise to a new type of critical phenomenon that we call entanglement percolation.
机译:量子通信网络由N个遥控节点组成,共享量子状态。通过经典通信辅助的每个节点中的本地操作的装置,将初始状态转换为完善的量子相关性,后来将被竭尽所用以执行量子信息任务,例如作为量子传送或量子晶体晶。给定由节点和连接的几何形状定义的网络,它非常了解是否可以建立长距离量子转换,从而在网络的两个终点之间的相关性与数字指数呈指数作用中间连接。在这方面,我们通过Quan-tum网络展示了我们最近的结果纠缠了纠缠的分布。在连接量子系统的一维链条的情况下,实验室几乎不令人惊讶地:只有在节点之间的连接中的缠绕大于最大缠绕状态的两个缠绕状态时,才能实现非指数衰减。图像变得更加丰富,对尺寸网络的网络有趣,一个:即使连接Nodesare没有最大缠结,也可以建立长距离相关性。实际上,在节点之间建立最大缠结的问题与统计力学中的经典渗透有关。然后,我们展示了诸如渗透和相位转换的统计概念,可以使用量子网络优化纠缠分布。值得注意的是,Qualtum特征允许超越古典渗透的众所周知的结果,使我们呼唤纠缠渗透的新类型的关键现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号