首页> 外文会议>International Conference on Thin Film Physics and Applications >Efficient broadband light absorption enhancement in InP/ZnO coreshell nanocone arrays for photovoltaic application
【24h】

Efficient broadband light absorption enhancement in InP/ZnO coreshell nanocone arrays for photovoltaic application

机译:INP / ZnO CoreShell纳米核苷阵列中的高效宽带光吸收增强用于光伏应用

获取原文

摘要

Nanowire solar cells are of great interests due to their promising prospects as nano-electronic power sources. Here, wepropose a standing semiconductor-dielectric core-shell nanocone array (CSNCA). We find that the CSNCA structure cannot only concentrate the incident light into the structure, but also confine most of the concentrated light to thesemiconductor (InP) core region, which enhances remarkably the light absorption of the more material-savingsemiconductor core. Thanks to the gradient of diameter size along the axial in cone, incident light of different wavelengthscan be maximally coupled into the core. We find guided resonance features along the radial and FP-resonant features alongthe axial by analyzing the electric field patterns at the absorption spectrum peaks. The CSNCA can support multiple higherorderHE modes, in comparison to the bare nanocone array (BNCA). Interaction of the adjacent higher-order HE modesresults in broadband light absorption enhancement in the solar radiation spectrum. Carrier generation rates (G) have alsobeen studied when the electrical part is discussed. CSNCAs show a unique advantage in G distribution. Results based ondetailed balance analysis demonstrate that the core-shell design gives rise to higher short-circuit current and open-circuitvoltage, and thus higher power conversion efficiency. This advantage is more apparent in thin structures compared withthe thick ones. Detailed research is focused on the 1 μm high CSNCAs, and a remarkable enhancement (42.2%) is gainedcompared with the BNCAs. Our study shows that the CSNCAs can be promising candidates for application in superminiature photodetectors, nanometer power sources and ultra-thin film solar cells.
机译:由于其希望作为纳米电子电源的前景,纳米线太阳能电池具有很大的兴趣。在这里,我们提出静态半导体介电芯壳纳米核苷酸阵列(CSNCA)。我们发现CSNCA结构可以不仅将入射光集中在结构中,而且还将大部分集中光线限制在一起半导体(InP)核心区域,可显着提高更具材料的光吸收半导体核心。由于沿锥形轴的直径尺寸的梯度,不同波长的入射光可以最大地耦合到核心中。我们发现沿径向和FP谐振功能的引导共振功能通过在吸收光谱峰处分析电场图案来轴向。 CSNCA可以支持多个高达与裸纳米核苷阵(BNCA)相比,他模式。邻近高阶的互动导致太阳辐射光谱宽带光吸收增强。承运人生成率(g)也有当讨论电气部分时已经研究过。 CSNCAS在G分布中显示出独特的优势。结果基于详细的平衡分析表明,核心外壳设计导致较高的短路电流和开路电路电压,从而更高的功率转换效率。这种优势在薄结构中更加明显,而与之相比厚厚的。详细的研究专注于1μm高CSNCAS,获得了显着的增强(42.2%)与BNCAS相比。我们的研究表明,CSNCAS可以在超级申请中承诺候选人微型光电探测器,纳米电源和超薄膜太阳能电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号