首页> 外文会议>International Gravel-Bed Rivers Workshop >28 Alluvial Steep Channels: Flow Resistance, Bedload Transport Prediction, and Transition to Debris Flows
【24h】

28 Alluvial Steep Channels: Flow Resistance, Bedload Transport Prediction, and Transition to Debris Flows

机译:28冲积陡光通道:流动阻力,床单运输预测和碎片流动过渡

获取原文

摘要

Studies on flow resistance in steep streams and shallow flows have received increasing attention in recent decades. However, for mountain rivers, characterized by coarse bed materials and steep slopes, traditional flow resistance relations generally provide poor predictions, with typical errors of ±30% (Bathurst, 2002). Several studies have shown that the traditional semi-logarithmic equation used to estimate flow resistance in deeper flows in more gently sloped channels may no longer be valid for shallow flows. Instead a power-law type flow resistance relation may be more appropriate for steeper and rougher channels: √8/? = a(d/D_x)~b (28.1) wherein ? = Darcy-Weisbach flow resistance coefficient, d = flow depth, Dx = grain size of the bed material for which x% is finer, a = empirical coefficient, and b = empirical exponent. The exponent b tends to increase from about 0 or 1/6 (Chezy equation or Manning-Strickler equation) up to about 1 for steep channels, i.e. it tends to increase with increasing bed slope and decreasing relative flow depth (Ferguson, 2007; Rickenmann and Recking, 2011); the exponent may possibly also decrease with increasing uniformity of the bed material distribution (Bathurst, 2002). Power-law type flow resistance relations can be transformed into dimensionless hydraulic geometry equations (Ferguson, 2007), which have been increasingly proposed for steep channels based both on flume and field observations (Aberle and Smart, 2003; Ferguson, 2007; Comiti et al., 2007, 2009; Zimmermann, 2010; Comiti and Mao, Chapter 26, this volume). Rickenmann (1991, 1994) introduced similar approaches, and Rickenmann and Recking (2011) have confirmed the suitability of such an approach based on more than 3000 field measurements, including rough and steep streams.
机译:近几十年来,对陡流和浅流量的流动性的研究得到了越来越长的关注。然而,对于山河,以粗床材料和陡坡为特征,传统的流动阻力关系通常提供差的预测,典型误差为±30%(Bathurst,2002)。几项研究表明,用于估计更深入的流动通道中更深入流动的传统半对数方程可能不再适用于浅流。相反,电力定律型流动阻力关系可能更适合陡峭和粗内通道:√8/? = a(d / d_x)〜b(28.1),其中=达西 - Weisbach流动性系数,D =流动深度,DX =床材料的晶粒尺寸,其中X%是更精细的,a =经验系数,B =经验指数。指数B倾向于从约0或1/6(Chezy方程或Manning-strickler方程)增加到约1的陡峭通道,即它随着床坡的增加和相对流动深度(Ferguson,2007; Rickenmann)趋于增加和Recking,2011);通过床材料分布的均匀性(Bathurst,2002),指数也可能降低。幂律型流动性关系可以转化为无量纲液压几何方程(Ferguson,2007),该方程(Ferguson,2007)已经越来越多地提出了基于Flume和现场观测的陡目(Aberle和Smart,2003; Ferguson,2007; Comiti等。,2007年,2009年; Zimmermann,2010; Comiti和Mao,第26章,这个卷)。 Rickenmann(1991,1994)介绍了类似的方法,Rickenmann和Recking(2011)已经证实了这种方法的适用性,基于3000多种现场测量,包括粗糙和陡峭的流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号