首页> 外文会议>International Astronomical Union >Ices in Starless and Starforming Cores
【24h】

Ices in Starless and Starforming Cores

机译:在无空和恒星核心中的冰

获取原文

摘要

Icy grain mantles are commonly observed through infrared spectroscopy toward dense clouds, cloud cores, protostellar envelopes and protoplanetary disks. Up to 80% of the available oxygen, carbon and nitrogen are found in such ices; the most common ice constituents -H_2O, CO_2 and CO -are second in abundance only to H_2 in many star forming regions. In addition to being a molecular reservoir, ice chemistry is responsible for much of the chemical evolution from H_2O to complex, prebiotic molecules. Combining the exisiting ISO, Spitzer, VLT and Keck ice data results in a large sample of ice sources (~80) that span all stages of star formation and a large range of protostellar luminosities (<0.1-10~5 L). Here we summarize the different techniques that have been applied to mine this ice data set on information on typical ice compositions in different environments and what this implies about how ices form and evolve during star and planet formation. The focus is on how to maximize the use of empirical constraints from ice observations, followed by the application of information from experiments and models. This strategy is used to identify ice bands and to constrain which ices form early during cloud formation, which form later in the prestellar core and which require protostellar heat and/or UV radiation to form. The utility of statistical tests, survival analysis and ice maps is highlighted; the latter directly reveals that the prestellar ice formation takes place in two phases, associated with H_2O and CO ice formation, respectively, and that most protostellar ice variation can be explained by differences in the prestellar CO ice formation stage. Finally, special attention is paid to the difficulty of observing complex ices directly and how gas observations, experiments and models help in constraining this ice chemistry stage.
机译:通常通过红外光谱朝向致密云,云核心,抗原壳信封和原始磁盘观察到冰冷的颗粒套。在这些含量中发现高达80%的可用氧气,碳和氮;最常见的冰块-H_2O,CO_2,CO_2和CO-ARE仅在许多星形成区域中的H_2。除了作为分子储层之外,冰化学还负责来自H_2O至复合物的大部分化学进化,益生元分子。结合泄漏的ISO,Spitzer,VLT和Keck Ice数据导致大型的冰源样本(〜80),跨越星形形成的所有阶段和大范围的抗原亮度(<0.1-10〜5L)。在这里,我们总结了已经应用于挖掘该冰数据的不同技术,该冰数据设置了关于不同环境中的典型冰组合物的信息以及这意味着在星形和行星形成期间的表格和发展。重点是如何最大限度地利用来自冰观察的实证限制,然后从实验和模型中应用信息。该策略用于识别冰带,并在云形成期间约束其在云形成期间形成哪种冰,其在普雷斯特拉核核心中形成,并且需要抗原热量和/或UV辐射形成。突出显示统计测试,生存分析和冰地图的效用;后者直接揭示了与H_2O和CO冰形成相关的两相中的孕产冰形成,并且大多数原料冰变化可以通过普雷斯特拉的CO冰形成阶段的差异来解释。最后,特别注意直接观察复杂冰的难度以及气体观测,实验和模型如何帮助约束这种冰化学阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号