首页> 外文会议>Topical Conference on Radio Frequency Power in Pasmas >HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas
【24h】

HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

机译:NSTX H模式等离子体的HHFW加热和电流驱动研究

获取原文

摘要

30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (I_(p)) ramp-up in NSTX. The initial approach to achieving this goal has been to heat I_(p) velence 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (P_(RF)), achieved a non-inductive current fraction, f_(NI) approx 0.65. Improved antenna conditioning resulted in the generation of I_(p) velence 650 kA HHFW H-mode plasmas, with f_(NI) approx 0.35, when P_(RF) >= 2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between the LCFS and the wall that can have large amplitudes at longer launch wavelengths. These simulation results qualitatively agree with HHFW+NBI H-mode data that show decreasing core RF heating efficiency and increasing RF power flow to the lower divertor at longer launch wavelengths.
机译:正在开发30MHz高谐波快速波(HHFW)加热和电流驱动,以帮助在NSTX中提供完全非感应等离子体电流(I_(P))斜坡。实现这一目标的初始方法已经加热I_(P)柔滑丝杠,具有电流驱动天线相位,以便产生具有显着的引导和RF驱动电流的HHFW H模式。最近的实验,仅使用1.4兆瓦的RF功率(P_(RF)),实现了非电感电流级分,F_(NI)约0.65。改进的天线调节导致产生I_(P)柔滑丝650ka HHFW H模式等离子体,具有F_(NI)约0.35,当P_(RF)> = 2.5 MW时。这些等离子体在HHFW加热过程中几乎没有边缘局部模式(ELM)活动,储存能量大幅增加,持续的中央电子温度为5-6 keV。 NSTX HHFW研究的另一个焦点是加热由90keV中性光束注射(NBI)产生的H模式。当施加HHFW加热时,改善了与NBI产生的H-Modes的HHFW偶联,导致电子温度谱的宽增加。对一对紧密匹配的NBI和HHFW + NBI H模式等离子体的分析显示,在最后闭合的磁通表面(LCFS)内沉积了大约一半的天线电力。在大约三分之二的LCF上阻尼的功率直接被电子直接吸收,并且三分之一加速器的快速离子主要迅速地从等离子体丢失。在较长的环形发射波长下,HHFW + NBI H模式等离子体可以具有RF功率流到LCFS外部的转向器,从而显着降低了RF功率沉积到核心。 ELMS还可以将RF功率沉积降低到核心并增加到边缘的功率沉积。 NSTX HHFW + NBI H模式等离子体最近的全波模型,用模型延伸到血管壁,预测LCFS和壁之间的同轴站立模式,该壁在更长的发射波长下可以具有大的振幅。这些模拟结果与HHFW + NBI H模式数据定性地同意,该数据显示核心RF加热效率降低,并在更长的发射波长下增加RF功率流到下部偏移器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号