首页> 外文会议>International Conference on Multiphase Production Technology >Modeling High-Viscosity Two-Phase Flow Pattern Transitions in Upward Vertical Flow in Pipes
【24h】

Modeling High-Viscosity Two-Phase Flow Pattern Transitions in Upward Vertical Flow in Pipes

机译:在管道向上垂直流动中建模高粘度两相流动模式

获取原文

摘要

Two-phase flow in vertical wells is a common occurrence in oil and gas production. High-liquid viscosity two-phase upward vertical flow in wells and risers presents a new challenge for predicting pressure gradient and liquid holdup due to the poor understanding and prediction of flow behavior, specifically flow pattern. Current two-phase flow mechanistic models were developed, validated, and tuned based on low-liquid viscosity two-phase flow data for which they show accurate flow pattern predictions. The objective of this study is to investigate the effect of liquid viscosity on two-phase flow pattern in vertical pipe flow. Further objective is to develop new/improve existing mechanistic flow-pattern-transition models for high-liquid viscosity two-phase flow in upward vertical pipe flow. High-liquid viscosity flow pattern two-phase flow data was collected from open literature, against which existing flow-pattern transition models were evaluated to identify discrepancies and potential improvements. The evaluation revealed that existing flow transitions do not capture the effect of liquid viscosity. Therefore, two bubble/dispersed bubble flow pattern transitions are proposed in this study for two different ranges of liquid viscosity. The first proposed model modifies Brodkey (1967) critical bubble agglomeration diameter by including liquid viscosity, which is applicable for liquid viscosity up to 100 mPa.s. The second model, which is applicable for liquid viscosities above 100 mPa.s proposes a new critical bubble diameter based on Galileo dimensionless number. Furthermore, the existing bubbly/intermittent flow transition model based on Taitel et al. (1980) critical gas void fraction of 0.25, is modified to account for liquid viscosity. For the intermittent/annular flow transition, Wallis (1969) was found to be accurate for high liquid viscosity two-phase flow and able to capture the high liquid viscosity data better than existing models. A validation study of the proposed transition models against high liquid viscosity data and a comparison with Barnea (1987) model revealed sensitivity to liquid viscosity and better results in predicting high viscosity liquid flow pattern data.
机译:垂直井中的两相流是石油和天然气生产的常见发生。孔和立管的高液体粘度两相向上垂直流动呈现出用于预测压力梯度和液体堆叠的新挑战,因为流动行为的理解差和预测,具体流动模式。基于低液体粘度两相流数据,开发,验证和调整了当前的两相流动力学模型,它们显示了精确的流动模式预测。本研究的目的是探讨液体粘度对垂直管道流动中两相流模式的影响。进一步的目的是开发用于向上垂直管道流动的高液体粘度两相流的新/改善现有的机械流动模式转换模型。从开放文献中收集了高液体粘度流动图案两相流量数据,评估现有的流量模式转换模型以识别差异和潜在的改进。评价显示现有的流动转变不会捕获液体粘度的效果。因此,在该研究中提出了两个泡沫/分散的气泡流动模式转变,用于两种不同的液体粘度范围。第一个拟议的模型通过包括液体粘度来改变Brodkey(1967)临界气泡凝聚直径,这适用于液体粘度,最高可达100mPa.s.适用于100MPa以上的液体粘度的第二模型提出了一种基于伽利略无量纲数的新的临界气泡直径。此外,基于Taitel等人的现有的泡泡/间歇流过渡模型。 (1980)修饰临界气体空隙率0.25,以解释液体粘度。对于间歇/环形流动过渡,发现瓦斯(1969)对于高液体粘度两相流并且能够比现有型号更好地捕获高液体粘度数据。对高液体粘度数据的提出过渡模型的验证研究及与Barnea(1987)模型的比较显示了对液体粘度的敏感性,更好的结果预测高粘度液体流动图案数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号