首页> 外文会议>International Symposium on Zirconium in the Nuclear Industry >Effect of Alloying Elements and Impurities on in-BWR Corrosion of Zirconium Alloys
【24h】

Effect of Alloying Elements and Impurities on in-BWR Corrosion of Zirconium Alloys

机译:合金元素和杂质对锆合金BWR腐蚀的影响

获取原文

摘要

The data base on the corrosion behavior of Zr alloy materials under BWR conditions was evaluated with respect to the burnup target of 70 MWd/kgU. At high burnups, corrosion rate and the rate of hydrogen pickup (HPU) may increase. This onset of increase obviously depends on the material, but also seems to be significantly affected by the coolant water chemistry. Because small differences in corrosion behavior at lower bumup might become more and more important with increasing burnup, Framatome ANP has performed several studies on the separate and combined effects of (1) alloying content of the claddings, (2) cladding material condition, (3) impurity content of the cladding, and (4) the coolant chemistry. This paper focuses on the effects the concentration of alloying elements and of impurities (including microstructural differences imposed by the annealing treatment) have on corrosion. The corrosion effects were evaluated in material test irradiation programs in two BWRs. Zircaloy type materials processed at low temperatures (LTP), defined by a low particle growth parameter (PGP) value, exhibit a maximum corrosion resistance between 1.2 and 1.5% Sn. Impurities, such as C, O, and P can increase the corrosion of Zircaloy in BWRs at high burnup. The higher the corrosion resistance of the base material, the more pronounced is the increase seen at high burnup. Above a critical PGP value, in-pile corrosion increases. At high burnups, Zry-4 shows a higher increase with increasing PGP than Zry-2, whereas at lower burnups both behave similarly. The critical PGP value varies with the chemical composition, such as Fe, Cr, and Ni content and the distribution of second phase particles (SPP). The effect of Si is more complex. Si increases in-pile corrosion at contents in excess of 140 ppm. Contents at 80 to 140 ppm can be beneficial, when the β-quench rate applied during fabrication is not high enough to ensure a uniform distribution of the SPP, and the alloying composition and the concentration of impurities is in a beneficial range. The hydrogen pickup fraction (HPUF) of Zircaloy type samples in BWRs decreases with decreasing corrosion resistance but differs from plant to plant. There are indications that the difference can partially be attributed to the Fe content in the coolant. The results are in agreement with the irradiation experience with Zry-2 LTP cladding extending up to 73 MWd/kgU in different BWRs.
机译:关于BWR条件下Zr合金材料的腐蚀行为的数据基于70mWd / kgu的燃烧靶评估了BWR条件下的腐蚀行为。在高燃烧的情况下,腐蚀速率和氢拾液速率(HPU)可能会增加。这种增加的增加明显取决于材料,但似乎也受到冷却液水化学的显着影响。由于较低的衰老腐蚀行为的小差异可能随着燃烧的增加而变得越来越重要,因此骨盆组ANP已经对(1)熔接物的合金含量的单独和组合效果进行了几项研究,(2)包层材料条件(3 )包层的杂质含量,和(4)冷却剂化学。本文重点介绍了合金元素和杂质浓度的影响(包括退火处理施加的微观结构差异)对腐蚀。在两种BWR中的材料测试辐照方案中评估了腐蚀效应。在低温(LTP)下加工的锆石型材料,由低颗粒生长参数(PGP)值定义,在1.2和1.5%Sn之间表现出最大耐腐蚀性。杂质,如C,O和P,可以在高燃烧时增加BWR的Zircaloy的腐蚀。基材的耐腐蚀性越高,在高燃烧中看到的增加就越明显。高于关键的PGP值,堆积腐蚀增加。在高燃烧时,Zry-4显示比Zry-2增加更高的PGP增加,而在较低的燃烧时则表现得类似。临界PGP值随化学成分而变化,例如Fe,Cr和Ni含量和第二相颗粒的分布(SPP)。 Si的效果更复杂。 Si以超过140ppm的内容物增加堆积腐蚀。当在制造过程中施加的β-骤冷速率不足以确保SPP的均匀分布和杂质浓度和杂质浓度的β-骤冷率时,含量为80至140ppm。 BWR中锆型型样品的氢拾液级分(HPUF)随着腐蚀性的降低而降低,但与植物不同。存在迹象表明,差异可以部分地归因于冷却剂中的Fe含量。结果与Zry-2 LTP包层的辐照经验一致,不同BWR延伸到73 MWD / KGU。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号