首页> 外文会议>Society for Machinery Failure Prevention Technology Meeting >AUTONOMOUS IMPACT DAMAGE DETECTION AND ISOLATION PREDICTION FOR AEROSPACE STRUCTURES
【24h】

AUTONOMOUS IMPACT DAMAGE DETECTION AND ISOLATION PREDICTION FOR AEROSPACE STRUCTURES

机译:航空航天结构的自主冲击损伤检测与隔离预测

获取原文
获取外文期刊封面目录资料

摘要

This paper presents a practical yet innovative impact damage identification and prognosis approach for aerospace structures that uses an optimized suite of reliable COTS sensors coupled with advanced damage detection and modeling algorithms. The presented methodology utilizes a monitoring approach based on acceleration measurements that are analyzed using advanced signal processing and dispersive wave theory models that capture frequency and orientation dependent wave propagation effects. The acceleration measurements and associated processing modules are used to provide immediate detection and isolation estimates, while an energy amplitude feature allows for assessments of damage severity after the impact. By embedding wave theory model results with the adaptive signal processing algorithms, a more accurate understanding of the time-frequency behavior of the dispersive waves produced at impact is gained. Damage localization is performed based on the comparison between the predicted and measured wave group velocities, with a genetic algorithm used to optimize the parameters of a triangulation procedure. This combination of model and feature-based algorithms allows the system to make use of limited, but readily available accelerometer data. This procedure also minimizes the learning and modeling difficulties associated with other techniques that are based solely on models or measurements. A few selected demonstrations are presented that illustrate the impact location prediction capabilities in realistic carbon fiber reinforced polymer (CFRP) composite panels.
机译:本文为航空航天结构提供了一种实用但创新的影响损伤识别和预后方法,该结构采用优化的可靠性COTS传感器以及具有先进的损伤检测和建模算法的优化套件。所提出的方法利用了基于使用高级信号处理和分散波理论模型来分析的加速度测量的监测方法,该分散波理论模型捕获频率和取向相关波传播效应。加速度测量和相关的处理模块用于提供立即检测和隔离估计,而能量幅度特征允许在冲击后进行损伤严重程度的评估。通过利用自适应信号处理算法嵌入波理论模型,获得了对在冲击时产生的分散波的时频性能的更准确的理解。基于预测和测量波群速度之间的比较来执行损伤定位,用于优化三角测量过程的参数的遗传算法。这种模型和基于特征的算法的组合允许系统利用有限但易于获得的加速度计数据。该过程还最大限度地减少了与完全基于模型或测量的其他技术相关的学习和建模困难。提出了一些选定的示范,其说明了现实碳纤维增强聚合物(CFRP)复合板中的冲击位置预测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号