首页> 外文会议>International Annual Conference of ICT >2-D Modelling and Simulation of Ignition of a Composite Solid Propellant
【24h】

2-D Modelling and Simulation of Ignition of a Composite Solid Propellant

机译:二维型固体推进剂点火模拟与仿真

获取原文

摘要

The mathematical model presented in this work considers a two-dimensional sandwich configuration of AP-HTPB based composite propellant exposed to hot gas with gas phase reactions for ignition. Temperature dependent thermo-physical properties of condensed and gas phases have been used in the ignition simulation. Five gas-phase reactions are assumed to govern gas-phase heat generation. The specific objectives of the present investigation are to study the effect of initial gas temperature, initial gas composition and pressurization rate on the time required for the inert heating during ignition transient of HTPB-AP propellants and also on the propellant surface heat flux and temperature distributions. The gas-phase pressure is assumed to vary linearly with time and is uniform in a small region adjacent to the solid propellant.. The computer program developed for simulation is first validated with the experimental data available in the literature for rapid pressurization rates (varying from 20 to 300 GPa/s) for AP-PBAA propellant. Simulation is then carried out for AP-HTPB propellant by conducting parametric studies on the onset of ignition. The onset of thermal runaway of surface temperature during ignition transient is assumed to occur when the temperature near AP-HTPB interface reaches 623K which is the decomposition temperature of AP. This decomposition triggers a rapid thermal runaway of surface temperature at the interface setting the stage for sustaining the ignition process. Pressurization rates, initial reactant mass fractions and initial gas temperatures are varied from 0.5 to 2GPa/s, from 0.9 to 0.1 and from 800 to 1300K respectively. Simulation results show that as the pressurization rate and initial gas temperatures increase, the time delay for the thermal runaway decreases and surface heat flux increases. There exists an optimum time delay for a specific initial oxidizer to fuel initial mass fraction ratio of the gas phase for a given pressurization rate and initial gas temperature.
机译:本作作品中提出的数学模型认为AP-HTPB基基复合推进剂的二维夹心构型暴露于热气体,具有用于点火的气相反应。在点火模拟中使用了冷凝和气相的温度依赖性热物理性质。假设五种气相反应控制气相发热。本研究的具体目的是研究初始气体温度,初始气体组成和加压率对HTPB-AP推进剂的点火瞬变期间的惰性加热所需的时间的影响,以及在推进剂表面热通量和温度分布上。假设气相压力随时间线性地线性变化,并且在与固体推进剂相邻的小区域中是均匀的。开发用于仿真的计算机程序首先通过文献中提供的实验数据,以快速加压率(不同于)适用于AP-PBAA推进剂20至300 gpa / s。然后通过对点火开始的参数研究进行参数研究,对AP-HTPB推进剂进行模拟。当AP-HTPB接口附近的温度达到623K是AP的分解温度时,假设在点火瞬变期间的热失控发生在点火瞬变期间的热失控。该分解在界面处触发了表面温度的快速热失控,该界面设定了用于维持点火过程的级。加压速率,初始反应物质量分数和初始气体温度分别从0.5至2gPa / s的0.5至2gpa / s,分别为0.9至0.1和800至1300k。仿真结果表明,随着加压速率和初始气体温度的增加,热失控的时间延迟降低,表面热通量增加。特定初始氧化剂存在最佳时间延迟,以燃料为给定的加压速率和初始气体温度的气相初始质量分数比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号