首页> 外文会议>International Conference on Composite Materials: Extended Abstracts >ENERGY ABSORPTION MECHANISMS IN CERTAIN FOAM MATERIALS
【24h】

ENERGY ABSORPTION MECHANISMS IN CERTAIN FOAM MATERIALS

机译:某些泡沫材料中的能量吸收机制

获取原文

摘要

Understanding penetration mechanisms are critical in the design of armors and selection/development of armor materials. Along those same lines, understanding energy absorption mechanisms is also important in designing energy absorption structures for a number of applications such as advanced armors, naval ships, protective barriers for civilian structures against terrorists attack, including crash barriers for auto race tracks. Natural cellular and manmade materials and foams have better energy absorption capability through large deformation mechanism. However none of these materials can take heat the generated in common explosion, projectiles like RPGs impacts, or the missiles impacts. The material used in such applications should be able to resist shock as well as heat. The proposed paper examines the energy absorption mechanics of natural materials like balsa wood, manmade foams like PVC foams, and a recently developed Eco-Core foam material [1] and compare with each other. The Eco-Core is foam type material that is made up of 95% fly ash (by volume), high char yield binder, and other additives. Microscopic structure of fly ash shows hollow ceramic balloons of 20 to 300 mm diameter with a wall thickness of about 20 mm. The balloons are syntactically bonded together by a phenolic resin. Compressive response of most foams start with a linear stress-strain response, then a highly nonlinear response, finally end with stiffening due to densification [2]. A typical response is shown in Figure 1. These response depends on the type cell (open or closed), material, and the fracture characteristics. In the case of Eco-Core, it also depends on the binder properties and failure of micro bubbles. The material energy absorption capability also depends on the state-of-stress (confined or unconfined). This paper details compressive response of various foam materials under different amounts of confinement, through microscopic studies the failure mechanisms are identified and modeled. Failure mechanics of eco-core are used in further enhancing the energy absorption of the material.
机译:了解渗透机制对于装甲和装甲材料的选择/开发的设计至关重要。沿着那些相同的线,了解能量吸收机制在为许多应用程序(如先进的装甲,海军舰艇,民用结构的保护障碍)设计能量吸收结构方面也很重要,包括对抗恐怖分子攻击的攻击障碍,包括汽车赛道的碰撞障碍。通过大变形机制具有更好的能量吸收能力的天然细胞和泡沫。然而,这些材料都不可以在常见的爆炸中产生加热,射击像RPG的影响,或导弹影响。用于这种应用中使用的材料应该能够抵抗休克以及热量。拟议的论文检查了Balsa木材,像PVC泡沫一样的人造泡沫等天然材料的能量吸收力学,以及最近开发的生态核心泡沫材料[1]并相互比较。生态核心是泡沫型材料,由95%粉煤灰(按体积),高炭产物粘合剂和其他添加剂组成。粉煤灰的微观结构显示了20至300 mm直径为20至300毫米的中空陶瓷球形,壁厚约20mm。气球通过酚醛树脂在句子上粘合在一起。大多数泡沫的压缩响应以线性应力 - 应变响应开始,然后是高度非线性响应,最终以致密化引起的加强结束[2]。典型的响应如图1所示。这些响应取决于型电池(打开或封闭),材料和断裂特性。在Eco-Core的情况下,它还取决于粘合剂性能和微气泡的失效。材料能量吸收能力还取决于应力状态(限制或无束)。本文通过微观研究详细说明各种泡沫材料的压缩响应,通过微观研究识别和建模故障机制。生态核的失效机制用于进一步增强材料的能量吸收。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号