首页> 外文会议>International Symposium on High-Performance Computer Architecture >Tapping ZettaRAM/spl trade/ for low-power memory systems
【24h】

Tapping ZettaRAM/spl trade/ for low-power memory systems

机译:挖掘Zettaram / SPL贸易/用于低功耗存储系统

获取原文

摘要

ZettaRAM/spl trade/ is a new memory technology under development by ZettaCore/spl trade/ as a potential replacement for conventional DRAM. The key innovation is replacing the conventional capacitor in each DRAM cell with "charge-storage" molecules - a molecular capacitor. We look beyond ZettaRAM's manufacturing benefits, and approach it from an architectural viewpoint to discover benefits within the domain of architectural metrics. The molecular capacitor is unusual because the amount of charge deposited (critical for reliable sensing) is independent of write voltage, i.e., there is a discrete threshold voltage above/below which the device is fully charged/discharged. Decoupling charge from voltage enables manipulation via arbitrarily small bitline swings, saving energy. However, while charge is voltage-independent, speed is voltage-dependent. Operating too close to the threshold causes molecules to overtake peripheral circuitry as the overall performance limiter. Nonetheless, ZettaRAM offers a speed/energy trade-off whereas DRAM is inflexible, introducing new dimensions for architectural management of memory. We apply architectural insights to tap the full extent of ZettaRAM's power savings without compromising performance. Several factors converge nicely to direct focus on L2 writebacks: (i) they account for 80% of row buffer misses in the main memory, thus most of the energy savings potential, and (ii) they do not directly stall the processor and thereby offer scheduling flexibility for tolerating extended molecule latency. Accordingly, slow writes (low energy) are applied to non-critical writebacks and fast writes (high energy) to critical fetches. The hybrid write policy is combined with two options for tolerating delayed writebacks: large buffers with access reordering or L2-cache eager writebacks. Eager writebacks are remarkably synergistic with ZettaRAM: initiating writebacks early in the L2 cache compensates for delaying them at the memory controller. Dual-speed writes coupled with eager writebacks yields energy savings of 34% (out of 41% with uniformly slow writes), with less than 1% performance degradation.
机译:Zettaram / SPL贸易/是ZETTACORE / SPL贸易正在开发的新内存技术/作为传统DRAM的潜在替代品。关键创新正在用“电荷存储”分子 - 分子电容器替换每个DRAM单元中的传统电容器。我们超越Zettaram的制造业福利,并从架构观察到发现架构指标领域内的福利。分子电容器是不寻常的,因为沉积的电荷量(可靠性感测至关重要)是无关的,即写入电压,即,在下面/下方存在离散阈值电压,该装置被完全充电/放电。从电压去耦充电可以通过任意小位线摇摆,节省能量来操纵。但是,虽然电荷无关,但速度依赖于电压。操作过于阈值,导致分子超越外围电路作为整体性能限制器。尽管如此,Zettaram提供速度/能量折衷,而DRAM是不灵活的,引入了内存建筑管理的新尺寸。我们应用架构见解,以便在不影响性能的情况下挖掘ZETTARAM的电力节省的全部范围。几个因素会融合到直接关注L2挫折:(i)他们占主存储器中的80%的行缓冲器未命中,因此大多数能量节省潜力,以及(ii)它们不会直接停止处理器,从而提供调度灵活性,用于耐受扩展分子延迟。因此,将慢速写入(低能量)应用于非关键回报和快速写入(高能量)到批判性提取。混合写策略与两个选项相结合,可容忍延迟写入:具有访问重新排序的大缓冲区或L2-Cache eAger返回。急切挫折与Zettaram非常具有相同的协同作用:在L2缓存中提前启动回写补偿以延迟在内存控制器处。与急切挫折耦合的双速写入产生34%的能量节省(均匀慢写入41%),性能下降小于1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号