首页> 外文会议>IFAC Symposium on Dynamics and Control of Process Systems >Dantzig-Wolfe Decomposition and Large -Scale Constrained MPC Problems
【24h】

Dantzig-Wolfe Decomposition and Large -Scale Constrained MPC Problems

机译:Dantzig-Wolfe分解和大型限制MPC问题

获取原文

摘要

Model Predictive Control (MFC) strategies are typically implemented in two levels: a steady-state target calculation and a control calculation. The steady-state target calculation consumes excess degrees of freedom within the control problem to provide optimal steady-state performance with respect to some specified objective. In some MFC approaches, the target calculation is formulated as a Linear Program (LP) with a pre-specified objective function and a linear or linearized steady-state model derived from that used in the control calculation. In large-scale problems, centralized MFC schemes find the optimal solution for the plant-wide optimization problem, but may not provide sufficient redundancy or reliability and can require substantial computation. On the other hand, in a decentralized MFC scheme, the target calculations are performed independently by ignoring interactions among units, and as a result will not usually find the optimal operation. In contrast to the centralized MFC approach, a decentralized MPC provides a high degree of redundancy with respect to the failure of an individual MPC. For large-scale process control problems, the desired characteristics for an MPC implementation include: accurate and quick tracking of the changing optimal steady-state operation, a high degree of reliability with respect to failure within the MPC application (i.e., failure of a portion of the control system), and low computational requirements. Fully centralized or monolithic MPC and independent block-wise decentralized MPC represent the two extremes in the "trade-off among the desired characteristics of an implemented MPC system. In this paper, we propose a coordinated, decentralized approach to the steady-state target calculation problem. Our approach is based on the Dantzig-Wolfe decomposition principle and has been found to be effective at finding the optimal plant operation while providing a high degree of reliability at a reasonable computational load.
机译:模型预测控制(MFC)策略通常在两个级别中实现:稳态目标计算和控制计算。稳态目标计算在控制问题内消耗多大程度的自由度,以提供关于某些特定目标的最佳稳态性能。在一些MFC方法中,目标计算被配制为具有预先指定的目标函数的线性程序(LP)和从控制计算中使用的线性或线性化稳态模型。在大规模的问题中,集中式MFC方案找到了植物广泛的优化问题的最佳解决方案,但可能无法提供足够的冗余或可靠性,并且可能需要大量计算。另一方面,在分散的MFC方案中,通过忽略单位之间的相互作用来独立地执行目标计算,结果通常不会找到最佳操作。与集中式MFC方法相比,分散的MPC相对于单独MPC的故障提供了高度的冗余。对于大规模过程控制问题,MPC实现的所需特性包括:对变化的最佳稳态操作的准确和快速跟踪,相对于MPC应用内的故障,高度可靠性(即,部分故障控制系统)和低计算要求。完全集中或单片MPC和独立块状的分散MPC代表“实施MPC系统所需特性”中的两个极端。在本文中,我们提出了协调,分散的方法来稳态目标计算问题。我们的方法是基于Dantzig-Wolfe分解原理,并且已被发现有效地在找到最佳的工厂操作,同时在合理的计算负荷下提供高度可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号