首页> 外文会议>International Conference on Materials Structure and Micromechanics of Fracture >Studies of SCC and Hydrogen Embrittlement of High Strength Alloys Using Fracture Mechanics Methods
【24h】

Studies of SCC and Hydrogen Embrittlement of High Strength Alloys Using Fracture Mechanics Methods

机译:使用骨折力学方法研究高强度合金的SCC和氢气脆化

获取原文
获取外文期刊封面目录资料

摘要

Fracture mechanics based test and evaluation techniques are used to gain insight into the phenomenon of stress corrosion cracking (SCC) and to develop guidance for avoiding or controlling SCC. Complementary to well known constant load and constant deflection test methods experiments that are based on rising load or rising displacement situations and are specified in the new ISO standard 7539 -Part 9 may be applied to achieve these goals. These are particularly suitable to study cases of SCC and hydrogen embrittlement of high strength steels, aluminium and titanium alloys and to characterise the susceptibility of these materials to environmentally assisted cracking. In addition, the data generated in such R-curve tests can be used to model the degradation of the material caused by the uptake of atomic hydrogen from the environment. This is shown for the case of a high strength structural steel (FeE 690T) where in fracture mechanics SCC tests on pre-cracked C(T) specimens a correlation between the rate of change in plastic deformation and the crack extension rate due to hydrogen embrittlement was established. The influence of plastic strain on the hydrogen diffusion was additionally studied by electrochemical permeation experiments. By modelling this diffusion based on the assumption that trapping of the hydrogen atoms takes place at trap sites which are generated by the plastic deformation, a good agreement was achieved between experimentally obtained data and model predictions.
机译:基于骨折力学的测试和评估技术用于深入了解应力腐蚀裂纹(SCC)的现象,并制定避免或控制SCC的指导。互补的持续载荷和恒定偏转试验方法基于上升载荷或上升位移情况并在新的ISO标准7539 -Part 9中规定的实验可以应用以实现这些目标。这些特别适用于研究SCC和高强度钢,铝和钛合金的氢脆和氢气脆化的病例,并表征这些材料对环保裂缝的易感性。另外,在这种R曲线试验中产生的数据可用于模拟由来自环境的原子氢摄取引起的材料的劣化。这对于高强度结构钢(费用690t)的情况显示,在裂缝力学SCC上进行预裂化的C(t)标本,塑性变形变化率与氢气脆化的裂缝延伸速率之间的相关性建立了。通过电化学渗透实验还研究了塑性应变对氢气扩散的影响。通过基于根据塑料变形产生的陷阱部位发生氢原子的假设来建模这种扩散,在实验获得的数据和模型预测之间实现了良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号