首页> 外文会议>International Astronautical Congress >Fault Estimation and Fault-Tolerant Control for Control Moment Gyro Actuated High Agility Spacecraft
【24h】

Fault Estimation and Fault-Tolerant Control for Control Moment Gyro Actuated High Agility Spacecraft

机译:控制时刻的故障估计和容错控制陀螺致动高敏捷宇宙飞船

获取原文

摘要

Control moment gyroscopes (CMGs) are widely used in the attitude determination and control of high agility spacecraft owing to their torque amplification property. However, situations of unexpected fault or failure of the CMG can cause severe performance degradation or even mission failure. To improve the robustness of spacecraft attitude control, this paper investigates the modelling, fault estimation and fault-tolerant control problem as applied to CMG actuated spacecraft. Firstly, the CMG is modelled as a cascade combination of an electrical motor and variable speed drive (EM-VSD) system. Each control freedom here corresponds to an EM-VSD loop. For a single gimbal CMG (SGCMG), it contains a gimbal control loop and wheel speed control loop. In the gimbal control loop, the EM-VSD system is used to generate the gimbal angular velocity, which produces the gyroscopic output control torque. In the wheel speed control loop, the EM-VSD system governs the constant wheel speed, resulting in a constant angular momentum. Potential faults lie in the mechanical part of the EM, sensors, actuators, VSD and electrical part of these components. Hence, the fault can be modelled as an effectiveness loss fault and an additive bias fault, which correspond to an appropriate combination of multiplicative fault and additive fault mathematically. Secondly, a lumped bias is introduced to model the total effect of the multiplicative fault and additive fault. Then a second order sliding mode observer is constructed to estimate the lumped bias. Finally, a fault tolerant control strategy that appropriately combines the estimates of the lumped bias is developed to accommodate the CMG faults. To verify the effectiveness of the proposed estimation method and fault-tolerant strategy, numerical simulations on a rigid spacecraft manoeuvre are conducted. Simulation results show that spacecraft reorientation can be achieved under the various fault scenarios with a high level of responsiveness.
机译:控制力矩陀螺(CMGS)被广泛用于姿态确定,并且由于它们的扭矩放大性能高敏捷飞船的控制。然而,CMG的意外故障或失效的情况下,可能会导致严重的性能下降,甚至任务失败。为了提高航天器姿态控制的鲁棒性,本文研究的建模,故障估计,并应用于CMG容错控制问题驱动的航天器。首先,CMG被建模为电动马达和变速驱动器(EM-VSD)系统的级联组合。这里每个控制的自由相当于EM-VSD循环。对于单一万向CMG(SGCMG),它包含一个万向节控制环和车轮速度控制环。在悬架控制环路中,EM-VSD系统用于产生万向节角速度,产生陀螺输出控制扭矩。在车轮速度控制环,所述EM-VSD系统支配恒定车轮速度,从而导致恒定角动量。潜在故障位于所述EM,传感器,致动器,VSD及这些组分的电气部件的机械部件。因此,故障可以被建模为一个有效性损失故障和添加剂偏差故障,其对应于乘法和故障添加剂故障数学的适当组合。其次,一个集总的偏置被引入到模型的乘法故障和添加剂故障的总效应。然后二阶滑模观测器来估计集总偏差。最后,适当地结合了集总偏差的估计容错控制策略,开发出适应CMG故障。为了验证所提出的估计方法和容错策略的有效性,在刚性航天器操纵数值模拟进行的。仿真结果表明,飞船重新定位可以在各种故障情况具有高度响应性来实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号