首页> 外文会议>International Astronautical Congress >Analysis of Adaptive Gaussian Mixture Unscented Kalman Filter Using Sparse Optical Observations for Initial Orbit Determination
【24h】

Analysis of Adaptive Gaussian Mixture Unscented Kalman Filter Using Sparse Optical Observations for Initial Orbit Determination

机译:使用稀疏光学观察初始轨道测定的自适应高斯混合无需卡尔曼滤波器分析

获取原文

摘要

The increasing amount of space debris poses significant threats to space assets. In order to avoid collisions with space debris, the acquisition of highly accurate and reliable orbital information of these threatening objects is necessary. A main caveat of optical observations (i.e., angles and angular rates) for space tracking is that the distance between the space object and the ground station is unknown. This factor can result in significant errors in obtaining the full information of the orbital state. One possible approach to address this is to introduce physical constraints to reduce the space of possible orbits, which is referred to as the admissible region (AR) technique. Additionally, for many real space debris tracking campaigns, limited observation times and short visible arcs lead to sparse observational data for a specific space object, which present more challenges to the initial orbit determination (IOD) problem. If there are large gaps between any two consecutive tracking arcs, the imperfect orbital dynamics with uncertain orbital parameters (e.g., area to mass ratio for atmospheric drag and solar radiation pressure) degrades the prediction accuracy and contributes to filter divergence. This paper presents an adaptive Gaussian mixture unscented Kalman filter (AGMUKF) to tackle this IOD problem. The initial orbital state is represented by a constrained AR or a probabilistic AR based on optical observations and additional physical constraints, i.e., semi-major axis and eccentricity. Thus, an AGMUKF can be initialised thereafter with splitting, pruning and merging of Gaussian mixture components. Both simulated and real observations are used for demonstration and analysis. The real data were collected at Mount Stromlo for different orbit scenarios. Efficacy of AGMUKF has been validated by preliminary IOD solutions initialised by two AR approaches.
机译:越来越多的空间碎片对空间资产构成了重大威胁。为了避免与空间碎片碰撞,需要采集这些威胁对象的高度准确和可靠的轨道信息。用于空间跟踪的光学观测(即角度和角度率)的主要警告是空间物体和地面站之间的距离未知。该因素可能导致获取轨道状态的完整信息时出现重大错误。解决此问题的一种可能方法是引入物理约束以减少可能轨道的空间,其被称为可允许区域(AR)技术。此外,对于许多真正的空间碎片跟踪活动,有限的观察时间和短可见弧导致特定空间对象的稀疏观测数据,这对初始轨道确定(IOD)问题提供了更多的挑战。如果在任何两个连续的跟踪弧之间存在较大的间隙,则具有不确定的轨道参数(例如,大气阻力和太阳辐射压力的区域为质量比的不完美轨道动态会降低预测精度并有助于过滤分流。本文介绍了一个自适应高斯混合的无味卡尔曼滤波器(Agmukf)来解决这个IOD问题。初始轨道状态由受限的AR或概率AR基于光学观察和额外的物理约束,即半主轴和偏心表示。因此,此后可以用分裂,修剪和合并高斯混合物组分的分裂,修剪和合并,因此可以初始化AgMukF。模拟和实际观察都用于演示和分析。在Mount Stromlo收集真实数据以进行不同的轨道场景。通过两个AR方法初始化的初步IOD解决方案验证了AGMUKF的疗效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号