首页> 外文会议>International Astronautical Congress >MARS VISION 2030: A HUMAN EXPLORATION ARCHITECTURE FOR ESTABLISHING A LONG-TERM PRESENCE ON MARS
【24h】

MARS VISION 2030: A HUMAN EXPLORATION ARCHITECTURE FOR ESTABLISHING A LONG-TERM PRESENCE ON MARS

机译:火星愿景2030:用于在火星上建立长期存在的人类勘探架构

获取原文

摘要

Mars Vision 2030 is an exploration architecture for a campaign of round-trip conjunction-class crew missions to the Mars surface in the 2030-2040 timeframe. This architecture was designed as an alternative to NASA's Design Reference Architecture 5.0 (DRA 5.0) with three overarching goals: 1. Minimize mission cost through the reuse of architecture elements where possible 2. Develop an in-space infrastructure to enable future, larger-scale missions to Mars 3. Establish a permanent Mars surface station capable of supporting future missions beyond this initial architecture At the start of the campaign, several elements are pre-deployed to the Mars surface. These elements are (1) the primary habitat module with crew quarters and closed-loop life support systems, (2) a resupply habitat module with food and consumables for the first surface mission, (3) a nuclear-fission power system, pressurized rover, and other surface equipment. Before the first mission, a Crew Transfer Vehicle (CTV) consisting of an in-space habitat, lander, Mars Ascent Vehicle (MAV), and propulsive stage is assembled in a Distant Retrograde Orbit (DRO) around the Moon. Once the CTV is assembled, the crew is delivered to DRO using an Earth Return Vehicle (ERV). The CTV then departs DRO (without the ERV) and transfers the crew to Mars orbit. Once the surface mission is complete, the CTV returns the crew to DRO. The crew then returns to Earth in the ERV. For subsequent crew missions, the transfer habitat and propulsive stage of the CTV are reused. The propulsive stage is refueled, and the transfer habitat is refurbished with new outfitting and consumables. Similarly, the surface habitat modules are reused; a new resupply module is delivered direct to the Mars surface ahead of each crew. The crew uses the pressurized rover to transfer from the lander/MAV and the surface base. In-space propulsion is provided by Nuclear Thermal Propulsion (NTP). Mars descent and ascent propulsion is provided by chemical rocket engines. The in-space and surface habitats rely on fully closed water and air life support systems; food and crew consumables are provided for each mission. Details of the engineering analysis are provided in the paper, including interplanetary trajectory analysis to determine mission C3 requirements and available launch windows and engineering diagrams and mass breakdown statements for all of the architecture elements. Programmatic factors such as mission cost, technology development, and mission dependencies are also discussed.
机译:Mars Vision 2030是在2030-2040时间范围内的往返结合级组织任务活动的探索架构。该架构被设计为NASA设计参考架构5.0(DRA 5.0)的替代方案,具有三个总体目标:1。通过尽可能通过重用架构元素重用特派团成本2.开发空间内基础架构以实现未来,更大规模Mars的任务3.建立一个能够在活动开始时支持超越这个初始架构之外的未来任务的永久火星地面站,几个元素将预先部署到火星表面。这些要素是(1)主要栖息地模块,带船员宿舍和闭环寿命支持系统,(2)将栖息地模块重新补给栖息地模块,用于第一表面任务的食品和耗材,(3)核裂变电力系统,加压流动率等地面设备。在第一次任务之前,由空间内栖息地,着陆器,火星上升车辆(MAV)和推进阶段组成的船员转移车(CTV)组装在月球周围的遥远逆行轨道(DRO)中。一旦组装了CTV,机组人员就会使用地球返回车辆(ERV)递送至DRO。然后,CTV离开DRO(没有ERV)并将船员传送到火星轨道。一旦表面任务完成,CTV就会将船员退回DRO。然后,船员在ERV中返回地球。对于随后的船员任务,CTV的转移栖息地和推进阶段被重用。推进阶段是加油,转移栖息地通过新的装备和耗材翻新。同样,表面栖息地模块重复使用;新的再补给模块直接向每个船员前进到火星表面。船员使用加压漫游器从兰德/ MAV和表面基础转移。空间内推进通过核热推进(NTP)提供。 MARS下降和上升推进由化学火箭发动机提供。空间和表面栖息地依赖于完全封闭的水和空气寿命支持系统;每项任务提供食物和船员消耗品。本文提供了工程分析的详细信息,包括行星际轨迹分析,以确定所有架构元素的Mission C3要求和可用的启动Windows和工程图表和大规模分析语句。还讨论了特派团成本,技术开发和使命依赖性等程序的因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号