首页> 外文会议>International Astronautical Congress >STRUCTURE DESIGN AND DYNAMICS OF VARIABLE TOPOLOGY SPACECRAFT
【24h】

STRUCTURE DESIGN AND DYNAMICS OF VARIABLE TOPOLOGY SPACECRAFT

机译:可变拓扑宇宙飞船的结构设计与动态

获取原文
获取外文期刊封面目录资料

摘要

In order to adapt to the multi-functional requirements or space environment of space exploration and increasingly complicated space operations, modern spacecraft systems require the design of modern spacecraft structure towards the reconfiguration, modularization and transformation. The conventional spacecraft structures are facing more and more new challenges, such as rapid response and long-term on-orbit maneuver. This paper proposes to resolve these problems using variable topology spacecraft. The variable topology spacecraft is a sort of new spacecraft, which is proposed with a background of increasingly complicated and multiple space missions. It should be noted particularly that the variable topology spacecraft can change its topology configuration, kinematic or dynamic parameters during the process of movement. The variable topology spacecraft which based on the topology mechanism is a new type of spacecraft of self-reconfiguration. By the combination and split of the modules, the change of connecting relationship and changing the type of kinematic pair, topology mechanism can change the spacecraft configuration in the process of missions on orbit adapting to different space operations and expanding the scope of application of the conventional spacecraft. The methodology of the research of the design and dynamics of variable topology spacecraft is outlined in this paper. Firstly, three topology configurations (Hinge-unfolded Pattern, Drawer-like Pattern and Bolted Pattern) which are the basis of variable topology spacecraft are designed. Secondly, based on orbital and functional requirements, the thermal environment of variable topology spacecraft is analyzed. Thirdly, complicated variable topology process is divided into several single variable topology processes, and the topology configuration of the spacecraft in these sub-processes remains. Fourthly, the structure dynamics simulation of single variable topology process is completed based on topology mechanisms design and thermal environment analysis with ANSYS, ADAMS. The simulation result is considered as the spacecraft structure parameters at the moment of the end of this single variable topology process. Finally, the spacecraft structure parameters at the end of the last single variable topology process are supposed to be the initial parameters of the next one. Therefore, the whole variable topology process simulation with topology method is completed by iterating the analysis process above. More functions, more development. And we can conclude that it is meaningful application for reference to take variable topology spacecraft in the future.
机译:为了适应太空勘探的多功能要求或空间环境,现代航天器系统需要设计现代航天器结构,以实现重新配置,模块化和转化。传统的航天器结构面临着越来越多的新挑战,例如快速响应和长期轨道机动。本文建议使用可变拓扑空间来解决这些问题。可变拓扑宇宙飞船是一种新的航天器,建议具有越来越复杂和多个空间任务的背景。应特别注意,可变拓扑空间可以在移动过程中改变其拓扑结构,运动或动态参数。基于拓扑机制的可变拓扑空间是一种新型的自我重新配置的航天器。通过模块的组合和分裂,连接关系的变化和改变运动对类型,拓扑机制可以在对不同空间操作的轨道上进行任务过程中的航天器配置,并扩大常规的应用范围。航天器。本文概述了可变拓扑宇宙飞船的设计和动态研究的方法。首先,设计了三种拓扑结构(铰链展开的图案,抽屉状图案和螺栓模式),其是可变拓扑宇宙飞船的基础。其次,基于轨道和功能要求,分析了可变拓扑航天器的热环境。第三,复杂的可变拓扑过程分为几个单一可变拓扑过程,并且这些子过程中的航天器的拓扑配置仍然存在。第四,基于拓扑机制设计和热环境分析与ANSYS,ANAMS的拓扑机制设计和热环境分析完成了单变拓扑过程的结构动态仿真。仿真结果被认为是本单可变拓扑过程结束时的航天器结构参数。最后,最后一个可变拓扑过程结束时的航天器结构参数应该是下一个初始参数。因此,通过迭代上面的分析过程来完成具有拓扑方法的整个可变拓扑过程仿真。更多功能,更多的发展。我们可以得出结论,参考未来采取可变拓扑宇宙飞船是有意义的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号