首页> 外文会议>AAS Annual Rocky Mountain Guidance and Control Conference >LASER POINTING DETERMINATION SYSTEM FOR THE GEOSCIENCE LASER ALTIMETER ON ICESAT. Initial In-Flight Performance Assessment
【24h】

LASER POINTING DETERMINATION SYSTEM FOR THE GEOSCIENCE LASER ALTIMETER ON ICESAT. Initial In-Flight Performance Assessment

机译:ICSAT上地球科学激光高度计的激光指向确定系统。最初的飞行绩效评估

获取原文

摘要

The primary mission of the Geoscience Laser Altimeter System (GLAS), launched on the Ice, Cloud and land Elevation satellite (ICESat) January 12th, 2003, is to measure changes in the topography and mass balance of the polar ice caps over 3 to 5 years. The altimetry measurement includes firing the laser at the surface at 40 Hz, collecting and timing the surface return. The time of flight is calculated to determine the elevation of the surface at each laser spot. The error of the measurement includes the accuracy of the GPS solution for spacecraft position, timing uncertainty in the ranging measurement, and pointing knowledge of the laser with respect to inertial coordinates. The pointing knowledge accuracy requirement is 1.5 arcseconds (1σ) for every laser shot fired at 40 Hz. Therefore, a highly accurate means to determine the attitude with respect to inertial space for the laser beam was developed. This is the first time that a spaceborne laser altimeter system directly measures the pointing uncertainty of the laser beam resulting in a highly accurate altimetry measurement. The paper discusses the Stellar Reference System (SRS), which is comprised of two star trackers, one having a narrow field of view for increased accuracy, a hemispherical resonant gyro (HRG) and angle preserving beam steering optics. Absolute laser pointing determination is achieved by simultaneous laser far field imaging and attitude determination in the system. Recent data from independent in-flight calibration of the system is presented. Compliance with requirements has been preliminarily verified.
机译:Geoscience激光高度计系统(GLAS)的主要任务在2003年1月12日在冰,云和土地海拔卫星(ICESAT)上推出,是测量极地冰盖的地形和质量平衡超过3到5的变化年。高度测量测量包括在40 Hz的表面射击表面,收集和定时表面返回。计算飞行时间以确定每个激光斑点的表面的升高。测量的误差包括用于航天器位置的GPS解决方案的精度,测量测量中的定时不确定性,以及指向激光相对于惯性坐标的知识。指向知识精度要求为1.5个弧形(1σ),每个激光射击在40 Hz射击。因此,开发了一种高度准确的方法来确定关于激光束的惯性空间的姿态。这是第一次是星载激光高度计系统直接测量激光束的指向不确定性,从而产生高精度的高度测量。本文讨论了由两个星跟踪器组成的恒星参考系统(SRS),该系统包括两个星形跟踪器,其具有窄的视野,用于提高精度,半球形谐振陀螺仪(HRG)和角度保持束转向光学器件。通过在系统中同时激光远场成像和姿态确定来实现绝对激光指向确定。提出了来自System的独立飞行校准的最新数据。遵守要求的遵守措施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号