首页> 外文会议>Workshop on Geothermal Reservoir Engineering >Inferring geothermal reservoir processes at the Raft River Geothermal Field, Idaho, USA through modeling InSAR-measured surface deformation
【24h】

Inferring geothermal reservoir processes at the Raft River Geothermal Field, Idaho, USA through modeling InSAR-measured surface deformation

机译:推断在美国筏河地热田地地热储层过程,通过建模令牌测量的表面变形

获取原文

摘要

Ground surface deformations detected with Interferometric Synthetic Aperture Radar (InSAR) provide valuable information for inferring subsurface reservoir processes that are difficult to observe directly. This study aims at building a reservoir model that honors the available geological, hydrological and geo-mechanical data and also produces ground surface deformation consistent with InSAR measurements. In our coupled thermo-hydro-mechanical (THM) model, the reservoir deforms as a result of the rock's poroelastic response to changes in hydrologic pressure and thermal expansion/contraction. The computations are performed using a massively parallel multi-physics code (GEOS) at the scale of the geothermal field. At Raft River, the results indicate that the observed deformation cannot be caused solely by pressure changes in the deep production reservoir, and that pressure increase in a shallower reservoir that accommodates the injected fluid (likely in the Salt Lake Formation) must be involved. The rising pressure in the shallow reservoir generates strong uplift at ground surface. The combination of this uplift with surface subsidence around the production wells creates a complex pattern of surface deformation in which the center of subtle subsidence significantly deviates from the location of the production wells. The net pressure in the shallow reservoir may gradually diffuse into the moderately permeable layer underneath, resulting in additional slow deformation. Therefore, the surface deformation captured by InSAR represents a combination of multiple mechanisms acting over different time scales. A parametric study suggests that the Bridge Fault Zone is likely a barrier, impeding laterally flow cross the fault, although the fault could serve as a fast flow path along the strike direction. The surface deformation data appear to be insensitive to the presence of the Narrows Structure (i.e., a poorly defined northeast-southwest trending structure within the deep geothermal reservoir), since removing the Narrows Structure from the model does not substantially change the modeled deformation pattern at the surface. A flow barrier likely exists to the east of the site, where the surface uplift forms a band striking from north to south. This case study demonstrates the utility of a forward model that honors available known information and THM coupled processes in understanding geothermal reservoir characteristics.
机译:用干涉性合成孔径雷达(INSAR)检测的地表变形提供了用于推断难以直接观察的地下储层过程的有价值的信息。本研究旨在建立一个储存模型,借助可用的地质,水文和地球机械数据,并产生与INSAR测量一致的地面变形。在我们的耦合热水机械(THM)模型中,储层由于岩石的呼吸响应而变形,对水文压力和热膨胀/收缩的变化。使用在地热场的刻度下使用大规模并行的多物理代码(Geos)来执行计算。在筏河上,结果表明,观察到的变形不能仅通过深度生产储层中的压力变化来引起,并且必须涉及容纳注入的流体(可能在盐湖形成的储层中的压力增加。浅水库中的上升压力在地面产生强烈的隆起。这种隆起的组合与生产井周围的表面沉降产生复杂的表面变形模式,其中微妙的沉降中心显着地偏离了生产井的位置。浅水储存器中的净压力可以逐渐扩散到下面的适度渗透层中,导致额外的慢变形。因此,由insar捕获的表面变形代表了在不同时间尺度上作用的多种机制的组合。参数研究表明,桥式故障区域可能是一个屏障,横向流动横跨故障,尽管故障可以用作沿着击缝方向的快速流动路径。表面变形数据看起来对变窄结构的存在不敏感(即,深层地热储存器内的东北 - 西南趋势结构不良),因为从模型中移除狭窄结构并不基本上改变建模的变形模式表面。该障碍可能存在于该地点的东部,地面隆起形成从北到南方的带撞击。本案例研究展示了向理解地热储层特征的授权已知信息和耦合过程的前向模型的效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号