首页> 外文会议>Workshop on Geothermal Reservoir Engineering >Fracture Mechanical Properties of Damaged and Hydrothermally Altered Rocks, Dixie Valley, NV: Implications for Fault Conduit Development in Geothermal Systems
【24h】

Fracture Mechanical Properties of Damaged and Hydrothermally Altered Rocks, Dixie Valley, NV: Implications for Fault Conduit Development in Geothermal Systems

机译:损坏和水热改变岩石的骨折力学性能,Nixie Valley,NV:地热系统的故障导管的影响

获取原文

摘要

Enhanced water-rock interaction in hydrothermal systems changes the textural and mineralogical composition of host rock, affecting the mechanical properties of fault-fracture systems, their permeability structure, and thus the development of hydrothermal convection cells. To characterize the impact of alteration on fracture mechanical properties, we used double-torsion load-relaxation testing to measure subcritical fracture growth indices (SCI) and mode-I stress intensity at calculated fracture growth velocities of 10~(-6) m/s (K_(IC*)) in two pairs of rock of varying chemical alteration from different hydrothermal settings. By comparing distinct hydrothermal alteration assemblages preserved in the footwall of the Dixie Valley Fault, NV, we can infer the relative changes in mechanical properties during progressive deformation and chemical alteration. Our tests indicate that alteration influences fracture mechanical properties to varying extent. Silicification is associated with high K_(IC*) and SCI, while altered samples containing unhealed damage are mechanically weaker. We conclude that changes in mechanical properties are related to the dominant alteration mechanism rather than the degree of alteration. A key control on relative strength of altered rocks is the prevalence of existing damage, in the form of microfractures or dissolution, versus mineral precipitation and healing. Spatial variation in dominant alteration mechanisms across hydrothermal systems likely produces systematic changes in the mechanical properties of fault-fracture conduits and adjacent host rock. Based on the alteration assemblages that we sampled, the mechanical contrast between fault zone and host appears to reverse between deep and shallow portions of the system: precipitation may seal and strengthen fault-fracture conduits in shallow portions of the system, while damage and dissolution at depth may contribute to mechanical localization of fault-fracture conduits.
机译:增强水热系统的水岩相互作用改变了宿主岩的纹理和矿物学组成,影响了故障骨折系统的机械性能,其渗透结构,从而产生了水热对流细胞的发展。为了表征改变对骨折机械性能的影响,我们使用双重扭转载荷 - 放松测试来测量亚临界骨折生长指标(SCI)和模式-I压力强度,计算骨折生长速度为10〜( - 6)m / s (k_(ic *))在两对岩石中,不同的水热设置不同化学变化。通过比较在Dixie谷故障的脚踏空间中保留的不同的水热改变组件,我们可以推断逐渐变形和化学改变期间机械性能的相对变化。我们的测试表明,改变会影响骨折机械性能以不同程度。硅化与高K_(IC *)和SCI有关,而含有不骨无解的损伤的改变样品是机械较弱的。我们得出结论,机械性能的变化与主要的改变机制有关,而不是改变程度。改变岩石的相对强度的关键控制是现有损害的患病率,以微磨术或溶解形式,与矿物沉淀和愈合的形式。水热系统中主导变化机制的空间变化可能在故障骨折导管和相邻主体岩石的机械性能方面产生系统的变化。基于我们采样的改变组合,断层区和主机之间的机械对比似乎在系统的深层和浅部分之间反转:降水可以密封并加强在系统的浅零件中的断裂导管,而损坏和溶解深度可能有助于故障骨折导管的机械定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号