首页> 外文会议>Electronic Components Technology Conference >High Speed Optical Interconnection using Embedded PDs on Electrical Boards
【24h】

High Speed Optical Interconnection using Embedded PDs on Electrical Boards

机译:在电路板上使用嵌入式PD的高速光学互连

获取原文

摘要

As the data rate of electronic circuitry dramatically increases, interconnection speed becomes one of the critical bottlenecks in the overall performance of current data processing systems. A number of alternative approaches have been suggested to improve the current interconnection performance in terms of operational speed, power consumption, and area [1, 2, 3, 4]. As an alternative for current electrical interconnections, optical interconnections offer several attractive features. Advantages of optical interconnections include low power consumption, a significant reduction in interconnect footprint, and robust signal quality in high density interconnection systems because of immunity to electromagnetic interference. There are a number of approaches toward the integration of optical signals into an electrical interconnection system. One approach utilizes waveguides and beam turning devices (e.g. mirrors, gratings) to address surface normal photodetectors (PDs) and vertical cavity surface emitting lasers (VCSELs) which can be bump bonded onto the module. A second approach also utilizes waveguides, however, the PDs and/or edge emitting lasers (EELs) are embedded in the waveguide/substrate sample, as shown in Figure 1, and evanescent field or direct coupling from the waveguide to the PD can be used to address the PD. This approach achieves alignment through assembly and successive masking layers and does not need optical beam turning devices. Thus, this optical interconnection integration mimics the transition in electronics from discrete packaged components to integrated circuits in the 1970s, through the integration of these embedded optical interconnections and active components. A great deal of research to date has focused upon the implementation of polymer optical waveguides with standard electrical interconnection substrates, and there have been demonstrations of polymer waveguides addressing PDs fabricated in Si and GaAs substrates. This paper describes the heterogeneous integration of independently optimized polymer waveguides, embedded thin film InGaAs PDs operating at a wavelength of 1300 nm, and a standard Si substrate; thus using a different material for each of the three components in the embedded optical waveguide interconnection. Finally, an integrated circuit is attached to the electrical interconnection substrate and wire bonded to the embedded PD, as shown in Figure 1. This work represents steps toward chip to chip embedded optical interconnections integrated with electrical interface circuitry.
机译:随着电子电路的数据速率显着增加,互连速度成为当前数据处理系统的整体性能中的临界瓶颈之一。已经提出了许多替代方法,以改善运行速度,功耗和区域[1,2,3,4]的电流互连性能。作为当前电互连的替代方案,光学互连提供了几个有吸引力的特征。光学互连的优点包括低功耗,由于电磁干扰的免疫力,高密度互连系统中的互连占地面积显着降低,并且在高密度互连系统中的鲁棒信号质量。将光信号集成到电互连系统中存在许多方法。一种方法利用波导和光束转动装置(例如镜子,光栅)来寻址表面普通光电探测器(PDS)和垂直腔表面发射激光器(VCSEL),其可以被撞击到模块上。第二种方法还利用波导,然而,PD和/或边缘发射激光器(EEL)嵌入波导/基板样品中,如图1所示,并且可以使用渐逝场或从波导到PD的直接耦合解决PD。该方法通过组装和连续掩模层实现对准,并且不需要光束转动装置。因此,该光学互连集成通过这些嵌入式光学互连和有源组件的集成来模拟从分散的封装组件到20世纪70年代的集成电路的转换。迄今为止的大量研究专注于用标准电互连基板的聚合物光波导的实现,并且已经有了在Si和GaAs基板中制造的PD的聚合物波导的演示。本文介绍了独立优化的聚合物波导,嵌入式薄膜IngaAs PD在1300nm的波长和标准Si衬底上的异质整合;因此,在嵌入式光波导互连中使用不同的材料。最后,集成电路附接到电互连基板和粘​​合到嵌入的PD的导线,如图1所示。该工作代表芯片到与电接口电路集成的芯片嵌入式光学互连的步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号