首页> 外文会议>International Symposium on Unmanned Untethered Submersible Technology >Kinematics and Performance of Maneuvering Control Surfaces in Teleost Fishes
【24h】

Kinematics and Performance of Maneuvering Control Surfaces in Teleost Fishes

机译:紧邻鱼类中操纵控制表面的运动学和性能

获取原文

摘要

Teleost fishes present a wide diversity of both maneuvering behaviors and hydrodynamic mechanisms to control maneuvering. Maneuvering behaviors include small yaw and pitch turns that either correct perturbations to some desired heading or reorient fish in a new heading, large yaw and pitch turns that are used to reverse direction, rapid yaw turns used for escape from a threatening stimulus, rapid accelerations for escape or the pursuit of prey, braking, reversing and hovering in still water or a bidirectional surge. The ability to exploit resources in structurally complex and high-energy habitats such as wave swept rocky shores and coral reefs using a diverse repertoire of maneuvering behaviors suggests that fishes are a good model for transferring biological information to the design and control of autonomous undersea vehicles (AUVs). While the entire body and fin surface of fishes function in maneuvering control, the combination of fin and body motions necessary to actuate a maneuver differ both within individuals among behaviors and within behaviors among individuals and species. A qualitative comparison of swimming behavior among a diverse array of fishes suggests two general principles. First, while axial (body) undulations are used by most fishes for steady swimming at typical cruising speeds, maneuvers are commonly controlled by fin motions with or without axial bending. Second, the tremendous variation in the combination of fin shapes and motions suggest that no single phenotype is optimal for the complete suite of maneuvering behaviors. The goal of this paper, then, is not to suggest the best species for an AUV blueprint because the design of any one species reflects both the distinct signature of its history and a mind-boggling array of trade-offs due to competing demands on functional systems. Instead, the goal of this paper is to review the kinematic control mechanisms used for maneuvering, compare the performance consequences of this variation, and use general principles distilled from these studies to suggest biology-inspired technologies for AUV design that best match the desired function.
机译:硬骨鱼呈现两个操纵行为和流体动力学机制,以控制操纵的广泛的多样性。操纵行为包括小偏航和俯仰匝,要么正确扰动了用于反方向,从危及刺激用于逃生快速偏航匝,为快速加速在一个新的标题,大偏航和俯仰匝一些期望的标题或重新调整鱼逃脱或追求猎物,制动,反转和悬停在静水或双向激增。利用结构复杂和高能量栖息地,如浪潮席卷使用操纵行为的不同组成部分的岩岸和珊瑚礁资源的能力表明,鱼类的生物信息传输到自主水下交通工具的设计和控制一套完好样板(水下机器人)。虽然整个主体和鱼类的翅片表面在操纵控制功能,需要致动的操纵鳍和身体动作的组合行为中,个人和物种之间的行为不同内既个体内。的游泳行为鱼类的多样性阵列之间的定性比较表明两种一般原则。首先,虽然轴向(机身)起伏在典型巡航速度所使用的大多数鱼类为稳定游泳,演习通常通过具有或不具有轴向弯曲翅片运动控制。其次,在散热片的形状和运动相结合的巨大变化表明,没有一个单一的表型是最佳操纵行为的完整套件。本文的目标,那么,不建议为AUV蓝图的最佳品种,因为任何一个物种的设计体现了其历史上的两个不同的签名和权衡由于对功能性的竞争性需求一个令人难以置信的阵列系统。取而代之的是,本文的目的是审查用于操纵运动控制机制,比较这种变化的性能结果,并利用这些研究蒸馏一般原则,提出一种用于AUV设计生物学灵感的技术,最符合需要的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号