首页> 外文会议>International Wheat Genetics Symposium >Genetic map-physical map relationships for homoeologous group 5 in wheat established using microsatellites
【24h】

Genetic map-physical map relationships for homoeologous group 5 in wheat established using microsatellites

机译:使用微卫星建立的小麦同源群5的遗传造影地图关系

获取原文

摘要

Since deletion lines are an ideal material for physically allocating ESTs and genes to small chromosomal regions in bread wheat, we characterized a set of 84 deletion lines covering the 21 chromosomes of wheat using 682 microsatellites. We localized these microsatellite loci to 94 breakpoints in an homozygous state (88 of them being distal deletions, six remaining interstitial), and five in an heterozygous state representing 159 deletion bins. We identified 105 new commonly mapped loci between genetic and physical maps (52 and 53 for ITMI and CtCS maps, respectively). Only a few discrepancies concerning marker order were observed. Using 121 microsatellites from homoeologous group 5, respectively ten, twelve and nine junctions were described for chromosomes 5A, 5B and 5D resulting in 28 deletion bins (nine for 5A, eleven for 5B and eight for 5D). Differences were noticed concerning the relationships between genetic and physical distances. We observed small genetic distances over large physical regions around the centromeres and large genetic to physical map ratios close to the telomeres. Chromosomes from homoeologous group 2 and 5 were the best covered (122 and 121 microsatellites respectively) while the coverage for those from group 4 was scarcer(69 microsatellites). The mapped microsatellite loci will be useful for deletion stock verifications as well as allocating of associated QTLs to deletion bins where numerous ESTs that could be potential candidate genes are currently assigned.
机译:由于缺失线是用于在面包小麦中的小染色体区域物理地分配EST和基因的理想材料,所以通过682微卫星覆盖了一组84缺失线,覆盖了小麦的21染色体。我们将这些微卫星基因座的纯合状态(其中88位为远端缺失,六个剩余间隙)和杂合子状态中的五个代表159缺失箱中的五个断裂点。我们在遗传和物理贴图(分别为ITMI和CTCS地图52和53之间)之间确定了105个新的常规映射基因座。只观察到有关标记顺序的几个差异。使用来自同优杂种组的121微卫星,分别用于染色体5a,5b和5d,得到28个缺失箱(5a,5b,5d,5d,5d,5d,5d,5d,5b,5b,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d,5d)中,分别描述了10,12个和九个结。关于遗传和物理距离之间的关系,注意到差异。我们观察到围绕焦化镜周围的大物理区域的小遗传距离,以及靠近端粒的物理地图比的大型遗传距离。来自同种型2和5的染色体是最佳覆盖(分别为122和121微卫星),而来自第4组的覆盖率是稀缺(69微卫星)。映射的微透露型基因座对于删除股票验证以及分配相关的QTL,可以分配删除垃圾箱,其中目前分配了可能成为潜在候选基因的许多EST。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号