首页> 外文会议>International Conference on Processing Manufacturing of Advanced Materials >Tomographic and Topographic Investigation of Poly-D,L-Lactide-co- Glycolide Microspheres Loaded with Prostaglandine E_2 for Extended Drug Release Applications
【24h】

Tomographic and Topographic Investigation of Poly-D,L-Lactide-co- Glycolide Microspheres Loaded with Prostaglandine E_2 for Extended Drug Release Applications

机译:用于延长药物释放应用的前列腺素E_2的Poly-D,L-丙交酯共糖苷微球的断层和地形研究

获取原文

摘要

Polymeric, biodegradable microspheres represent a good reliable system to investigate the release of bioactive substances in both in vitro and in vivo applications. Common biomaterials for the synthesis of these microspheres are aliphatic polyesters of the poly(α-hydroxy)acids, especially poly-L-lactides (PLA) and polyglycolides (PGA) or their copolymers poly-D,L-lactide-co-glycolides (PLGA). In our own previous studies we have developed PLGA microspheres with integrated PGE_2 as model substance for a wide range of biomedical applications, especially in angiogenesis, fracture healing and cartilage repair. The synthesis is based on a binary solvent in water emulsion approach, where two different solvents are used to dissolve the active agent and the polymer, while being miscible in each other (CHCl_3, ethyl acetate). Both, the degradation of the material and the release profiles were investigated using SEM and mass spectrometry coupled with gas- or high performance liquid chromatography. SEM and AFM measurements indicated a porous structure of the microspheres but could not resolve the true three dimensional structure of the microspheres. Therefore, synchrotron radiation-based μCT (SR-μCT) investigations were performed to link the release profile to the structural design of the microspheres. As a result, we were able to cross validate the experimental data from SEM and AFM with SR-μCT, demonstrating both microporosity and nano-porosity. The polymer itself appears to consist of 200 nm - 300 nm sized particles.
机译:聚合物,可生物降解的微球代表良好的可靠性系统,用于研究体外和体内应用中的生物活性物质的释放。用于合成这些微球的常见生物材料是聚(α-羟基)酸,尤其是聚-L-丙交酯(PLA)和聚乙酰基(PGA)的脂族聚酯,或它们的共聚物聚-D,L-丙交酯 - 共乙酰基( PLGA)。在我们以前的研究中,我们已经开发了PLGA微球,其具有集成的PGE_2作为模型物质,适用于各种生物医学应用,尤其是血管生成,骨折愈合和软骨修复。合成基于水乳液方法的二元溶剂,其中使用两种不同的溶剂来溶解活性剂和聚合物,同时彼此混溶(CHCl_3,乙酸乙酯)。使用与气体或高效液相色谱相偶联的SEM和质谱,研究了材料的降解和释放曲线。 SEM和AFM测量表明了微球的多孔结构,但不能解决微球的真实三维结构。因此,进行同步辐射辐射的μCT(SR-μCT)研究以将释放曲线链接到微球的结构设计。结果,我们能够通过SR-μct交叉从SEM和AFM和AFM进行验证,证明微孔和纳米孔隙率。聚合物本身似乎由200nm - 300nm尺寸的颗粒组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号