【24h】

Electrolytic phase transformation actuators

机译:电解相变致动器

获取原文
获取外文期刊封面目录资料

摘要

The emerging field of materials-based actuation continues to be the focus of considerable research due to its inherent scalability and its promise to drive devices in ways that cannot be realized with conventional mechanical actuator strategies. Current approaches include electrochemically responsive conducting polymers, capacitance-driven carbon nanotubes actuators, pH responsive hydrogels, ionic polymer metal composites, electric field responsive elastomers, and field-driven electrostrictive polymers. However, simple electrochemical processes that lead to phase transformations, particularly from liquid to gas, have been virtually ignored. Although a few specialized applications have been proposed, the nature of the reactions and their implication for design, performance, and widespread applicability have not been addressed. Herein we report an electrolytic phase transformation (EPT) actuator, a device capable of producing strains surpassing 136,000% and stresses beyond 200 MPa. These performance characteristics are several orders of magnitude greater than those reported for other materials and could potentially compete with existing commercial hydraulic systems. Furthermore, unlike other materials-based systems that rely on bimorph structures to translate infinitesimally small volume changes into observable deflections, this device can direct all of its output towards linear motion. We show here that an unoptimized actuator prototype can produce volume and pressure changes close to the theoretically predicted values, with maximum stress (70 kPa) limited only by the mechanical strength of the apparatus. Expansion is very rapid and scales with applied current density. Retraction depends on the catalytic nature of the electrode, and state-of-the-art commercial fuel cell electrodes should allow rates surpassing 0.9 mL's-1.cm-2 and 370 kPa's-1.cm-2. We anticipate that this approach will provide a new direction for producing scalable, low-weight, high performance actuators that will be useful in a broad range of applications.
机译:由于其固有的可扩展性以及其承诺以传统的机械执行器策略无法实现的方式,因此基于材料的致动的新兴领域仍然是由于其固有的可扩展性和驾驶设备的承诺。电流接近包括电化学响应导电聚合物,电容驱动的碳纳米管致动器,pH响应水凝胶,离子聚合物金属复合材料,电场响应弹性体和现场驱动的电伸缩聚合物。然而,实际上忽略了导致相变的简单电化学过程,特别是从液体到气体。虽然已经提出了一些专业应用,但尚未解决反应的性质及其对设计,性能和广泛适用性的含义。在此,我们报告了一种电解相变(EPT)致动器,一种能够产生超过136,000%的菌株和超过200MPa的应力的装置。这些性能特征比其他材料报告的数量级,可能与现有的商业液压系统竞争。此外,与其他基于材料的系统不同,依赖于BimORPH结构将无穷大的体积变化转化为可观察到的偏转,该装置可以将其所有输出指向线性运动。在这里,在这里示出了未优化的致动器原型可以产生靠近理论上预测值的体积和压力变化,其具有最大应力(70kPa)仅受设备的机械强度限制。扩展非常快速,施加电流密度。收缩取决于电极的催化性质,而最先进的商业燃料电池电极应允许速率超过0.9ml-1.cm-2和370kpa'-1.cm-2。我们预计这种方法将为生产可扩展,低重量,高性能执行器提供新的方向,这将在广泛的应用中有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号