首页> 外文会议>International Congress on Nitrogen Fixation >Functional analysis of regulatory genes involved in Medicago truncatula nodule organogenesis
【24h】

Functional analysis of regulatory genes involved in Medicago truncatula nodule organogenesis

机译:Medicago truncatula结节组织中涉及的调控基因的功能分析

获取原文

摘要

The symbiotic interaction between leguminous plants and rhizobia results in the development of a novel organ on the plant roots, the nodule, where bacteria provide fixed nitrogen for the host. Briefly, the microsymbionts attach to and enter the roothair cells while the plant forms a tube-like infection thread through which the bacteria move into the root cortex. Simultaneously, cortical cells are induced to divide and the infection threads invade these dividing cells forming the nodule primordium.This primordium differentiates into a mature nodule where rhizobia are converted into bacteroids and start to fix nitrogen (Cohn et al. 1998). Rhizobia induce nodule morphogenesis on the plant through the production of nodulation signals (Nod factors; Schultze, Kondorosi 1998). These Nod signals trigger the earliest stages of nodule development, including root hair deformation and curling, cortical cell division and the expression of several early nodulin (enod) genes. Under starvation for combined nitrogen, plants of certain Medicago cultivars have the capacity to form root nodules even in the absence of rhizobia (NAR~+ phenotype), the so-called spontaneous nodules indicating that the developmental program of nodule formation preexists in legumes. These nodules show histological features similar to those of bacterium-induced nodules but the central zone cells contain only amyloplasts (Truchet et al. 1989). Hence, it has been suggested that spontaneous nodules might serve as carbon storage organs induced during nitrogen starvation and be the ancestors of the nitrogen-fixing nodules. Thus, Nod factors act as primary morphogenetic signals triggering a nodule developmental program although other plant factors are likely required for the regulation of nodule morphogenesis such as plant hormones (Fang, Hirsch 1998; Heidstra et al. 1997; Penmetsa, Cook 1997), the stele factor, undine, (Smit et al. 1995) and the metabolic status of the plant (high carbon and low nitrogen) (Bauer et al. 1996).
机译:在对植物的根的新的器官,结节,其中细菌提供固定氮为主机的发展豆科植物根瘤菌和结果之间的共生相互作用。简言之,microsymbionts附着并进入roothair细胞,而所述植物形成的管状侵染线,通过该细菌移入根皮层。同时,皮质细胞被诱导分而感染螺纹侵入形成根瘤primordium.This原基分化成成熟结节其中根瘤菌被转换成类菌体,开始修复氮这些分裂细胞(Cohn等人,1998)。根瘤菌诱导通过生产结瘤信号对植物根瘤形态(Nod因子;舒尔茨,1998 Kondorosi)。这些信号的Nod触发根瘤发育的最早阶段,包括根毛变形,卷曲,皮质细胞分裂和几个早期根瘤(ENOD)基因的表达。下饥饿组合的氮,某些苜蓿品种的植物具有的能力,形式根瘤甚至在不存在根瘤菌(NAR〜+表型),即所谓的自发结节指示,在豆科植物形成根瘤的预先存在的发育程序。这些结节示出了类似于那些细菌诱导的结节,但中心区域的细胞仅含有造粉体(Truchet等人,1989)的组织学特征。因此,有人建议,自发结节可作为​​氮饥饿期间引起的碳储存器官,并成为固氮结节的祖先。因此,Nod因子充当触发根瘤发育程序尽管其它植物因素可能需要结节形态发生的调控如植物激素主要形态发生信号(方,1998赫希; Heidstra等人1997; Penmetsa,1997库克),则碑因子,尿苷,(Smit等人,1995)和植物的代谢状态(高碳钢和低氮)(Bauer等人,1996)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号