首页> 外文会议>European Symposium on Computer Aided Process Engineering >Numerical investigation of viscous effect on Taylor bubble formation in co-flow microchannel
【24h】

Numerical investigation of viscous effect on Taylor bubble formation in co-flow microchannel

机译:助流微通道泰勒泡沫形成粘性效应的数值研究

获取原文

摘要

In recent years, studies on two-phase flow in microchannels have attracted huge interest due to its wide range of application in lab-on-a-chip devices and microreactors. Regarding gas-liquid two-phase flow in microchannels, most of the previous research dealt with gas and Newtonian liquid phase. However, several fluids in practical application exhibit non-Newtonian behavior, as well. In this study, gas and non-Newtonian liquid phase flow in a circular co-flow microchannel has been numerically investigated. The developed CFD model is initially validated with the literature data, and thereafter the model is employed for non-Newtonian studies. Polyacrylamide (PAAm) aqueous solutions with different mass concentration, which exhibit shear thinning behavior are used as non-Newtonian liquid. The effects of PAAm concentration, gas and liquid inlet velocities, and surface tension on Taylor bubble have been systematically explored. The results show that Taylor bubble length decreases with increasing PAAm concentration. The bubble velocity is found to increase with increasing PAAm concentration due to increase in liquid film thickness around the bubble. The film around the Taylor bubble is precisely captured. It is observed that the rheological properties of continuous phase have significant effect on bubble shape and liquid film thickness. Squeezing break up mechanism is observed at higher liquid inlet velocity for lower concentration of PAAm. The bubble formation frequency is found to reach maximum with increasing liquid velocity and PAAm concentration. Different flow patterns are observed namely, Taylor bubble, and non-Taylor bubble, where the bubble length is smaller than the capillary diameter of the channel. Additionally, flow pattern maps are also reported based on inlet velocities. These understandings motivate for new predictive modeling approaches in design and applications demanding the use of non-Newtonian fluids.
机译:近年来,由于其在芯片芯片装置和微反应器中广泛的应用,对微通道的两相流的研究引起了巨大的利益。关于微通道的气液两相流,以前的大多数研究涉及气体和牛顿液相。然而,在实际应用中的几种流体也表现出非牛顿行为。在该研究中,在数值上研究了圆形循环微通道中的气体和非牛顿液相流。开发的CFD模型最初用文献数据验证,此后该模型用于非牛顿研究。具有不同质量浓度的聚丙烯酰胺(Paam)水溶液,其表现出剪切稀释行为用作非牛顿液体。系统探索了PaAM浓度,气体和液体入口速度和表面张力的影响。结果表明,泰勒气泡长度随着PAAM浓度的增加而降低。由于气泡周围的液体膜厚度的增加,发现气泡速度随着PAAM浓度的增加而增加。泰勒泡沫周围的薄膜精确地捕获。观察到连续相的流变性质对气泡形状和液体膜厚度具有显着影响。在较高的液体入口速度下观察到挤压破碎机制,以降低持续的Paam。发现气泡形成频率随着液体速度和PAAM浓度而达到最大值。观察到不同的流动模式即,泰勒气泡和非泰勒泡,其中气泡长度小于通道的毛细管直径。另外,还基于入口速度报告流动模式图。这些理解为设计和应用中的新预测建模方法而要求使用非牛顿流体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号