首页> 外文会议>International Symposium on Graph Drawing >Application of Graph Layout Algorithms for the Visualization of Biological Networks in 3D
【24h】

Application of Graph Layout Algorithms for the Visualization of Biological Networks in 3D

机译:图形布局算法在3D中的生物网络可视化中的应用

获取原文

摘要

The visualization and analysis of biological systems and data as networks has become a hallmark of modern biology. Relationships between biological entities; individuals, proteins, genes, RNAs etc., can all be better understood at one level or another when modelled as networks. As the size of these data has grown, so has the need for better tools and algorithms to deal with the complex issue of network visualization and analysis. We describe application and evaluation of a state-of-the-art graph layout method for use within biological workflows. BioLayout Express~(3D) is a powerful tool specifically designed for visualization, clustering, exploration, and analysis of very large networks in 2D and 3D space derived primarily from biological data [1]. In particular, its development has been driven by the need to analyse gene expression data, which typically consists of 10's of thousands of rows of quantitative gene expression measurements. First, the tool calculates a correlation matrix and then builds relationship networks, where nodes represent genes and edges expression similarities above a given r threshold. The resulting graphs can be very large e.g. 20-30,000 nodes, 5 million edges and possess a high degree of local structure with modules of co-expressed genes forming distinct cliques of high connectivity within the networks. BioLay-out has for a long time used a modified CPU/GPU parallelised version of the Fruchterman-Reingold (FR) algorithm for graph layout, and visualization of the graphs in 3D offers distinct advantages when viewing such complex graph structures. MCL clustering is used to divide the graph into coexpression clusters for further analysis. Whilst the existing FR implementation is capable and in many ways adequate at laying out these types of graph, the results for other graphs derived from biological data are less satisfactory, in particular DNA assembly graphs, which are inherently different in structure. The overlapping nature of DNA fragments when joined based on read-similarity form 'chain graphs'. Layout using the FR algorithm places nodes efficiently on a local scale, but a lack of global awareness results in a knot-like graph structure (Figure 1A) inhibiting the efficient visualisation of the overall assembly.
机译:作为网络的生物系统和数据的可视化和分析已成为现代生物学的标志。生物实体之间的关系;当以网络建模时,可以在一个层次或另一个层次上更好地理解个体,蛋白质,基因,RNA等。随着这些数据的大小已经生长,因此需要更好的工具和算法来处理网络可视化和分析的复杂问题。我们描述了用于在生物工作流程中使用的最先进的图表布局方法的应用和评估。 BiolaYout Express〜(3D)是一个强大的工具,专门用于可视化,聚类,探索和分析非常大的网络中的2D和3D空间主要来自生物数据[1]。特别是,它的发展是通过分析基因表达数据的需要驱动,该数据通常由10个数千行的定量基因表达测量组成。首先,该工具计算相关矩阵,然后构建关系网络,其中节点表示基因和边缘表达式相似度,上述给定R阈值。所得到的图表可以非常大。 20-30,000个节点,500万个边缘,具有高度的局部结构,具有共同表达基因的模块,形成网络内的具有不同的高连接性的群体。 Biolay-Out已经长时间使用了Fruchterman-Reingold(FR)算法的修改过的CPU / GPU并行化版本,用于图形布局,3D中的图形可视化在观看这种复杂的图形结构时提​​供了独特的优势。 MCL群集用于将图形划分为共存集群以进行进一步分析。虽然现有的FR实现能够并且在许多方面铺设出这些类型的图表时,但是从生物数据中衍生的其他图表的结果尤其令人满意,特别是DNA组装图,其在结构中固有不同。基于读取相似性“链图”加入时DNA片段的重叠性质。使用FR算法的布局在局部刻度上有效地放置节点,但缺乏全局意识导致结合的图形结构(图1a)抑制了整个组件的有效可视化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号