【24h】

Is Room-temperature Superconductivity with Phonons Possible?

机译:是否可以使用音源的室温超导性?

获取原文

摘要

By recognizing the vital importance of two-hole Cooper pairs (CPs) in addition to the usual two-electron ones in a strongly-interacting many-electron system, the concept of CPs was re-examined with striking conclusions: namely, they are gapped and linearly-dispersive resonances with a finite lifetime—but provided the ideal-gas Fermi sea is replaced by a BCS-correlated unperturbed ground-state "sea." Based on this, Bose-Einstein condensation (BEC) theory has been generalized to include not boson-boson interactions (also neglected in BCS theory) but rather boson-fermion (BF) interaction vertices reminiscent of the Fr?hlich electron-phonon interaction in metals. Instead of phonons, the bosons in the generalized BEC (GBEC) theory are now both particle and hole CPs. Unlike BCS theory, the GBEC model is not a mean-field theory restricted to weak-coupling as it can be diagonalized exactly. In weak coupling it reproduces the BCS condensation energy, and the next-order-in-coupling term increases its magnitude with respect to BCS. Each kind of CP is responsible for only half the condensation energy. The GBEC theory reduces to all the old known statistical theories as special cases—including the so-called "BCS-Bose crossover" picture which in turn generalizes BCS theory by not assuming that the interelectronic chemical potential equals the Fermi energy. Indeed, a BCS condensate is precisely the weak-coupling limit of a GBE condensate with equal numbers of both types of CPs. With feasible Cooper/BCS model interelectonic interaction parameter values, and even without BF interactions, the GBEC theory yields transition temperatures [including room-temperature superconductivity (RTSC)] substantially higher than the BCS ceiling of around 45K, without relying on non-phonon dynamics involving excitons, plasmons, magnons or otherwise purely-electronic mechanisms. The results are expected to shed light on the experimental search for RTSC.
机译:通过在强相互作用的许多电子系统识别到通常的两电子的人除了两孔库珀对(CPS)的极端重要性,CP的概念重新审查了惊人的结论:即,它们是跳空高开具有有限寿命的线性分散共振 - 但是提供了理想气体费米海被BCS相关的未受干扰的地面“海”取代。在此基础上,玻色 - 爱因斯坦凝聚(BEC)理论已被推广到包括未玻色子的玻色子相互作用(也忽略了BCS理论),而是玻色子 - 费米子(BF)的相互作用顶点让人想起神父?hlich电子 - 声子相互作用的金属。而不是声子,在广义BEC(GBEC)理论中的玻斯现在都是粒子和孔CP。与BCS理论不同,GBEC模型并不是一个含义弱耦合的平均场理论,因为它可以准确地对达耦合。在弱耦合中,它再现BCS冷凝能,下一阶耦合术语相对于BCS增加其幅度。每种CP都是对冷凝能的一半负责。 GBEC理论将所有旧的已知统计学理论减少为特殊情况 - 包括所谓的“BCS-Bose交叉”图片,其又通过不假设互电子化学势等于费米能量来推广BCS理论。实际上,BCS缩合物正是具有相同数量的两种类型CPS的GBE冷凝物的弱耦合极限。具有可行的Cooper / BCS模型间隙相互作用参数值,即使没有BF相互作用,GBEC理论也会产生转变温度[包括室温超导性(RTSC)]基本上高于45K的BCS天花板,而不依赖于非声子动态涉及激子,等离子体,氧化厂或其他纯电子机制。预计结果将阐明RTSC的实验搜索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号