首页> 外文会议>International Symposium on Rarefied Gas Dynamics >The Computational Complexity of Traditional Lattice-Boltzmann Methods for Incompressible Fluids
【24h】

The Computational Complexity of Traditional Lattice-Boltzmann Methods for Incompressible Fluids

机译:传统格子玻尔兹曼对不可压缩流体方法的计算复杂性

获取原文

摘要

It is well-known that customary direct solution methods (based on the discretization of the fluid fields) for the fluid equations of incompressible fluids may be affected by a high computational complexity. This is due primarily to the numerical solution of the Poisson equation for the fluid pressure and occurs when the scale-length of turbulent fluctuations becomes comparable to the discretization scale which characterizes the numerical solution method. An alternative, which can reduce significantly the complexity caused by the numerical solution of the fluid equations for incompressible fluids, may be achieved by so-called particle simulation methods. In such a case the dynamics of fluids is approximated in terms of a set of test particles which advance in time in terms of suitable evolution equations defined in such a way to satisfy identically the Poisson equation. Particle simulation methods rely typically on appropriate kinetic models for the fluid equations which permit the evaluation of the fluid fields in terms of suitable expectation values (or momenta) of the kinetic distribution function f(r, v, t), being respectively r and v the position an velocity of a test particle with probability density f (r, v, t). These kinetic models can be continuous or discrete in phase space, yielding respectively continuous or discrete kinetic models for the fluids. However, also particle simulation methods may be biased by an undesirable computational complexity. In particular, a fundamental issue is to estimate the algorithmic complexity of numerical simulations based on traditional LBM's (Lattice- Boltzmann methods; for review see Succi, 2001 [1]). These methods, based on a discrete kinetic approach, represent currently an interesting alternative to direct solution methods. Here we intend to prove that for incompressible fluids fluids LBM's may present a high complexity. The goal of the investigation is to present a detailed account of the origin of the various complexity sources appearing in customary LBM's. The result is relevant to establish possible strategies for improving the numerical efficiency of existing numerical methods.
机译:众所周知,常规直接解决方案方法(基于流体场的离散化)不可压缩流体的流体方程可能受到高计算复杂性的影响。这主要是由于流体压力的泊松方程的数值解决方案,并且当湍流波动的鳞片长度与表征数值解决方案方法的离散化尺度相当时,发生。可以通过所谓的粒子模拟方法实现一种替代方案,可以显着降低由不可压缩流体的流体方程的数值溶液引起的复杂性。在这种情况下,流体的动态近似于一组测试颗粒,该试验颗粒在以这种方式定义的合适的演化方程,以满足相同的泊松方程。粒子仿真方法通常依赖于用于流体方程的适当动力学模型,其允许在动力学分布函数f(r,v,t)的适当期望值(或动量)方面评估流体场,分别为r和v具有概率密度F(R,V,T)的测试粒子的位置。这些动力学模型可以是连续的或离散的相位空间,分别用于流体的连续或离散的动力学模型。然而,还可以通过不希望的计算复杂性偏置粒子模拟方法。特别是,基本问题是基于传统的LBM(Lattice-Boltzmann方法的数值模拟算法复杂性(Lattice-Boltzmann方法;查看Succi,2001 [1])。这些方法基于离散动力学方法,表示目前是直接解决方案方法的有趣替代方案。在这里,我们打算证明对于不可压缩的流体,流体LBM可能存在高度复杂性。调查的目标是介绍习惯性LBM中出现的各种复杂性来源的起源的详细说明。结果与建立提高现有数值方法的数值效率的建立可能的策略是相关的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号